NET Remoting

© ELCA-CH -2003 PRR

ELCA

Agenda

Part O - Introduction
Distributed Objects

Part | - . NET Remoting
Overview
Activation
Leases
Configuration
Limitations

V1.0 © ELCA -CH-2003 PRR

Part O

Distributed Object Systems

© ELCA-CH -2003 PRR

ELCA

Motivation

Why do we need a “Distributed Object System”?
= different systems

= J[oad balancing / efficiency / cost
= distribute work among many machines
" to0 many objects to fit on one machine
" too many request to be processed by one machine
= cluster is cheaper than a supercomputer
= administrative
= customer and provider are different entities (e.g. B2B)
= security
= different parts of the system require different protection
= database behind firewall, webserver on internet
= specialization
= machine may be optimized / configured for particular task

3 V1.0 © ELCA -CH-2003 PRR

ELCA

Problems

" object references

" pointers

= different type systems

» references vs. values

= distributed garbage collection
= object location

" naming, haming service

= object activation

= data protocol

" message protocol

V1.0

© ELCA -CH-2003 PRR

ELCA

Serialization

conversion of an object's instance into a byte stream
Deserialization

conversion of a stream of bytes into an object's instance
Marshaling

gathering and conversion (may require serialization) to
an appropriate format of all relevant data, e.g in a
remote method call; includes detalls like name
representation.

Definitions

5 V1.0 © ELCA -CH-2003 PRR

ELCA

RPC / XDR
first implementation of distributed procedure calls (before OO
times) [SUN]

CORBA /lIOP
standard for distributed object systems [OMG]

Java RMI
java framework for distributed java objects; RMI / IIOP is based on
a subset of CORBA [SUN]

.NET Remoting
distributed object framework in .NET. [Microsoft]

WebServices

distributed method calls (not a distributed object system!) over
SOAP + HTTP

Existing Solutions

6 V1.0 © ELCA -CH-2003 PRR

Part |

NET Remoting

© ELCA-CH -2003 PRR

ELCA

Teach yourself .NET remoting.....
= Visual Studio .NET / MSDN online documentation
" Ingo Rammer; Advanced .NET Remoting; APress
" http://www.dotnetremoting.cc/

References

8 V1.0 © ELCA -CH-2003 PRR

£1Cf Remoting Overview

new Service()
or
Activator.GetObject(...)

Arepunog urewoq uonedljddy

IChannelinfo Channelinfo;
IEnvoyinfo Envoylnfo;
IRemotingTypelnfo Typelnfo;
string URI;

Network

V10 © ELQ@P- CH - 2003 PRR

Channels Overview

Service s = new Service();
s.DoSomething();

serialize object

custom operations > Channel

handle communication
_/

10 _ V1.0 © EL!'— CH-2003 PRR

ELCA

Channel Formatters
SOAP
= serialization using SOAP

= customizable
= [Element(name="...")]
= [Attribute(name="...")]
= [Xmlignore]

= SOAP-incompatible!
= slow

binary
= binary serialization

= customizable
= [NonSerializable]
= |Serializable Interface

custom

11 V1.0

Channel Components

Transport Sinks
= TCP
= HTTP
= HTTPS

= requires hosting in I1S!

= custom

Notes
= Formatters and

Transport

sinks freely combinable
= SOAP+HTTP not

compatible with
WebServices

© ELCA -CH-2003 PRR

ELCA

12

Channel Configuration

Objects and Channels are both
registered to the remoting system

Channels and Objects are
orthogonal:

= There is no way to force an
object to use a given channel

= There is no way to limit a
channel to a set of machines

V1.0

TCP : 8087

HTTP : 8088
YITTPS : 8089

A

Registered
Channels

Registered
Obijects

© ELCA -CH-2003 PRR

Channel Registration

Code Configuration XML Configuration
HttpChannel channel = new HttpChannel(); <channels>
ChannelServices.RegisterChannel(channel); <channel ref=,http“/>

</channels>
Client-side channel with SOAP formatter on HTTP transport-sink
TcpChannel channel = new TcpChannel(1234); <channels>
ChannelServices.RegisterChannel(channel); <channel ref=,tcp* port=,1234“ />
</channels>
Server-side channel with binary formatter on TCP transport-sink at port 1234
ListDictionary prop = new ListDictionary(); <channels>
prop.Add("port", 4321); <channel ref=,http“ port=,4321“>
<serverProviders>
HttpChannel channel = new HttpChannel(<formatter ref=,binary” />
prop, </serverProviders>
new BinaryClientFormatterSinkProvider(), </channel>
new BinaryServerFormatterSinkProvider()); </channels>

ChannelServices.RegisterChannel(channel);

Server-side channel with binary formatter on HTTP transport-sink at port 4321
13 V1.0 © ELCA -CH-2003 PRR

ELCA Object Marshaling

MarshalByRefObjects [Serializable]
= remoted by reference = all fields of instance are
= client receives an ObjRef cloned to the client
object, which is a“pointer” to = [NonSerialized] fields are
the original object ignored
|ISerializable

= object has method to define
own serialization

AppDomain 1 AppDomain 2 AppDomain 1 AppDomain 2

\ Serialized Serialized
ObjRef fld,... fld_

14 V1.0 © ELCA -CH-2003 PRR

ELCA

Remoting Activation

Server-Side Activation
(Well-Known Objects)

Singleton Objects

" only one instance is allocated to process
all requests

SingleCall Objects
= one instance per call is allocated

Client-Side Activation

Client Activated Objects

= the client allocates and controls the object
on the server

15 V1.0

“stateless”

“stateful”

© ELCA -CH-2003 PRR

ELCA

Service Object

interface IMyRemoteObiject {
void DoThis(...);
void DoThat(...);

Scenario

}

public class MyRemoteObject: MarshalByRefObject, IMyRemoteObiject {
public MyRemoteObject() {...}
public void DoThis(...) {...}
public void DoThat(...) {...}

16 V1.0 © ELCA -CH-2003 PRR

ELCA
Client

IMyRemoteObject obj = (IMyRemoteObject) Activator.GetObject(
typeof(IMyRemoteObiject),
~http://localhost:1234/MyRemoteObject.soap®);

Server-Activated Objects

Server (SingleCall)

RemotingConfiguration.RegisterWeIIKnownServiceType(//

typeof(MyRemoteObject), the parameterless
,MyRemoteObject.soap*, uonstructor is called
WellKnownObjectMode.SingleCall); on instantiation

Server (Singleton)

RemotingConfiguration.RegisterWellKnownServiceType(

typeof(MyRemoteObject), the parameterless

~MyRemoteObject.soap®, constructor is called
WellKnownObjectMode.Singleton); on instantiation

MyRemoteObject obj = new RemoteObject(XYZ); % o :
RemotingServices.Marshal(obj, ,MyRemoteObject.soap®); INNiE3e) el

17 V1.0 © ELCA -CH-2003 PRR

ELCA
Client

RemotingConfiguration.RegisterActivatedClientType(
typeof(MyRemoteObject), ,http://localhost:1234/MyServer®);

Client Activated Objects

MyRemoteObject obj = new MyRemoteObject();

Server

RemotingConfiguration.ApplicationName = ,MyServer*;
RemotingConfiguration.RegisterActivatedServiceType(typeof(MyRemoteObject));

Remarks

= allocation with new = class must be present!
= same class
= stub (created with soapsuds): limited to the default constructor
= workaround: factory pattern

18 V1.0 © ELCA -CH-2003 PRR

ELCA Using Configuration Files (1)

Code

RemotingConfiguration.Configure(,server.exe.config®);

Config
<configuration>
<system.runtime.remoting>
<application>
<channels>
<channel ref=,http* port=,1234“ />
</channels>
<service>
<wellknown mode=,Singleton”
type=,Server.CurstomerManager, Server*
objectUri=,CustomerManager.soap” />
</service>
</application>
</system.runtime.remoting>
</configuration>

Same as:
HttpChannel channel = new HttpChannel(1234);
ChannelServices.RegisterChannel(channel);

Same as:
RemotingConfiguration.RegisterWellKnownServiceType(
typeof(CustomerManager), ,CustomerManager.soap*,
WellKnownObjectMode.SingleCall);

19 V1.0 © ELCA -CH-2003 PRR

ELCA

Using Configuration Files (ll)

Advantages
= flexibility: change configuration without recompilation

Disadvantages
* checks are done at run-time instead of compile-time

= wrong config may be ,correct” (no exception), system will
use local type instead of remote

20 V1.0 © ELCA -CH-2003 PRR

ELCA

Leases

distributed GC implementation:

" time-to-live counter for each object
= |nitial lifetime per object
" increment counter at every access
= at time-out, collect object

= avoid keeping references from server to client or pinging
the client (not always possible)

public override object InitializeLifetimeService() {
ILease lease = (ILease)base.InitialiyeLifetimeService();
If (lease.CurrentState == LeaseState.Initial) {
lease.InitialLeaseTime = TimeSpan.FromMinutes(5);
lease.RenewOnCallTime = TimeSpan.FromMinutes(2);

}

return lease;
} return null to disable
object collection

21 V1.0 © ELCA -CH-2003 PRR

ELCA

Remoting has the following limitations:

Server-Activated Objects

= object configuration limited to the default constructor
= Singleton can be configured using RemotingServices.Marshal
= SingleCall requires different implementation classes

Client-Activated Objects
= class must be instantiated, no access over interface
= class hierarchy limitations

= use Factory Pattern
" to get interface reference
" to allow parametrization of the constructor

Furthermore...

= interface information is lost when passing an object
reference to another machine

Limitations

22 V1.0 © ELCA -CH-2003 PRR

Deployment Options

ELCA
Problem
object metadata must be
visible on the client
Shared Implementation Shared Base Class
= deploy the class dll on client = deploy the abstract class dll on
and server client and server
. - = restricted to
bad design Activator.GetObject()
Shared Interfaces SoapSuds
= deploy the interface dll on " generate metadata with
client and server SoapSuds
= good design = only default constructor

supported

= does not work with
ISerializable types
(implementation not reflected)

= implementation restriction
when using multiple servers

23 V1.0 © ELCA -CH-2003 PRR

