Advanced .NET Remoting

INGO RAMMER

Apress”

Administrator
Advanced .NET Remoting

Administrator
INGO RAMMER

Administrator
Advanced .NET Remoting
INGO RAMMER

Advanced .NET Remoting
Copyright ©2002 by Ingo Rammer

All rights reserved. No part of this work may be reproduced or transmitted in any form or by
any means, electronic or mechanical, including photocopying, recording, or by any information
storage or retrieval system, without the prior written permission of the copyright owner and

the publisher.

ISBN (pbk): 1-59059-025-2

Printed and bound in the United States of America 12345678910

Trademarked names may appear in this book. Rather than use a trademark symbol with every
occurrence of a trademarked name, we use the names only in an editorial fashion and to the
benefit of the trademark owner, with no intention of infringement of the trademark.
Technical Reviewer: Kent Sharkey

Editorial Directors: Dan Appleman, Peter Blackburn, Gary Cornell, Jason Gilmore, Karen
Watterson, John Zukowski

Managing Editor: Grace Wong

Project Manager: Alexa Stuart

Copy Editor: Ami Knox

Production Editor: Julianna Scott Fein

Compositor and Illustrator: Impressions Book and Journal Services, Inc.

Indexer: Valerie Haynes Perry

Cover Designer: Tom Debolski

Marketing Manager: Stephanie Rodriguez

Distributed to the book trade in the United States by Springer-Verlag New York, Inc., 175 Fifth
Avenue, New York, NY, 10010 and outside the United States by Springer-Verlag GmbH & Co. KG,
Tiergartenstr. 17, 69112 Heidelberg, Germany.

In the United States, phone 1-800-SPRINGER, Email orders@springer-ny.com, or visit
http://www.springer-ny.com.

Outside the United States, fax +49 6221 345229, Email orders@springer.de, or visit
http://www.springer.de.

For information on translations, please contact Apress directly at 2560 Ninth Street, Suite 219,
Berkeley, CA 94710.

Email info@apress.com, or visit http://www.apress.com.

The information in this book is distributed on an “as is” basis, without warranty. Although every
precaution has been taken in the preparation of this work, neither the author nor Apress shall
have any liability to any person or entity with respect to any loss or damage caused or alleged to
be caused directly or indirectly by the information contained in this work.

The source code for this book is available to readers at http://www.apress.com in the
Downloads section.

CHAPTER 3
Remoting in Actigi::::>

In THIS CHAPTER, I DEMONSTRATE the key techniques you'll need to know to use .NET
Remoting in your real-world applications. I show you the differences between
Singleton and SingleCall objects and untangle the mysteries of client-activated
objects. I also introduce you to SoapSuds.exe, which can be used to generate
proxy objects containing only methods’ stubs. This chapter is somewhat code
based, so prepare yourself to start VS .NET quite often!

Ges of Remoting >

As you have seen in the previous chapter’s examples;there are two very different
types of remote interaction between components. One uses serializable objects
that are passed as a copy to the remote process. The second employs server-side
(remote) objects that allow the client to call their methods.

@lue Objects >

Marshalling objects by value means to serialize their state (instance variables),
including all objects referenced by instance variables, to some persistent form
from which they can be deserialized in a different context. This ability to serialize
objects is provided by the .NET Framework when you set the attribute
[Serializablel for a class or implement ISerializable

When passing the Customer object in the previous chapter’s validation
example to the server, it is serialized to XML like this:

al:Customer id="ref-4">

<FirstName id="ref-5">Joe</FirstName>
<LastName id="ref-6">Smith</LastName>
<Date0fBirth>1800-05-12T00:00:00.0000+02:00</Date0fBirth>

This XML document will be read by the server and an exact copy of the
object created.

27

Administrator
CHAPTER 3
Remoting in Action

Administrator

Administrator

Administrator

Administrator

Administrator
Types of Remoting

Administrator
Marshalling objects by value means to serialize their state (instance variables),
including all objects referenced by instance variables, to some persistent form
from which they can be deserialized in a different context. This ability to serialize
objects is provided by the .NET Framework when you set the attribute
[Serializable] for a class or implement ISerializable.

Administrator
This XML document will be read by the server and an exact copy of the
object created.

Administrator
<a1:Customer id=”ref-4”>
<FirstName id=”ref-5”>Joe</FirstName>
<LastName id=”ref-6”>Smith</LastName>
<DateOfBirth>1800-05-12T00:00:00.0000+02:00</DateOfBirth>
</a1:Customer>

Administrator
ByValue Objects

Administrator
by value

Administrator
to serialize their state

Administrator
including all objects referenced

Administrator
to some persistent form

Administrator
they can be deserialized

Administrator
SoapSuds.exe,

Administrator
Remoting

Administrator
[Serializable]

Administrator
ISerializable.

Administrator
CHAPTER 3

Administrator

Chapter 3

28

NOTE An important point to know about ByValue objects is that they are
not remote objects. All methods on those objects will be executed locally
(in the same context) to the caller. This also means that, unlike with
MarshalByRefObjects, the compiled class has to be available to the client.
You can see this in the preceding snippet, where “age” is not serialized but
will be recalculated at the client using the getAge() method.

When a ByValue object holds references to other objects, those have to
be either serializable or MarshalByRefObjects; otherwise, an exception will be
thrown, indicating that those objects are not remoteable.

QarshalByRefObjects)

A MarshalByRefObject is a remote object that runs on the server and accepts
method calls from the client. Its data is stored in the server’'s memory and its

methods executed in the server’s AppDomain.iInstead of passing around a vari-
able that points to an object of this type, in reality only a pointer-like

construct—called an ObjRef—is passed around/Contrary to common pointers,
this ObjRef does not contain the memory address, rather the server name/IP
address and an object identity that identifies exactly one object of the many that
are probably running on the server. I cover this in depth later in this chapter.
MarshalByRefObjects can be categorized into two groups: server-activated

objects (SAOs) and client-activated objects (CAOs).

&Zrver-Activated Objects>

Services. When a client requests a reference to @ no message will travel to

the server. Only when methods are called on this remote reference will the server
be notified

Server-activated objects are somewhat comparai le to classic stateless Web

Depending on the configuration of its objects, the server then decides
whether a new instance will be created or an existing object will be reuse &SADUSY
can be marked as eitheSingleton or SingleCall. pthe first case, one instance
serves the requests of all clients Th a multithreaded fashion. When using objects
in SingleCall mode, as the name implies, a new object will be created for each
request and destroyed afterwards.

In the following examples, you'll see the differences between these two kinds
of services. You'll use the same shared interface, client- and server-side imple-
mentation of the service, and only change the object mode on the server.

Administrator

Administrator

Administrator
When a ByValue object holds references to other objects, those have to
be either serializable or MarshalByRefObjects; otherwise, an exception will be
thrown, indicating that those objects are not remoteable.

Administrator
A MarshalByRefObject is a remote object that runs on the server and accepts
method calls from the client. Its data is stored in the server’s memory and its
methods executed in the server’s AppDomain. Instead of passing around a variable
that points to an object of this type, in reality only a pointer-like

Administrator
this ObjRef does not contain the memory address, rather the server name/IP
address and an object identity that identifies exactly one object of the many that
are probably running on the server. I cover this in depth later in this chapter.
MarshalByRefObjects can be categorized into two groups: server-activated
objects (SAOs) and client-activated objects (CAOs).

Administrator
MarshalByRefObjects

Administrator
Server-Activated Objects

Administrator
Server-activated objects are somewhat comparable to classic stateless Web
Services. When a client requests a reference to a SAO, no message will travel to
the server. Only when methods are called on this remote reference will the server
be notified.

Administrator

Administrator

Administrator
instance will be created or an existing
either Singleton or SingleCall. In
all clients in a multithreaded

Administrator
reused. SAOs

Administrator
ByValue objects is that they are

Administrator
not remote objects.

Administrator
When

Administrator
holds references to other objects,

Administrator
have to

Administrator
either serializable

Administrator
MarshalByRefObjects;

Administrator
exception

Administrator
MarshalByRefObject is a remote object that runs on the server and accepts
method calls from the client.

Administrator
AppDomain.

Administrator
ObjRef does not contain the memory address,

Administrator
server name/IP

Administrator
an object identity

Administrator
MarshalByRefObjects

Administrator
categorized

Administrator
server-activated

Administrator
client-activated objects

Administrator
Server-activated objects

Administrator
SAOs

Administrator
Singleton

Administrator
SingleCall.

Administrator
first case, one instance
serves the requests of all clients in a multithreaded fashion.

Administrator
SingleCall mode,

Administrator
new object will be created for each

Administrator
request

Administrator

Administrator

Administrator

Administrator

Remoting in Action

The shared assembly General.dll will contain the interface to a very simple
remote object that allows the storage and retrieval of stateful information in form
of an int value, as shown in Listing 3-1.

Listing 3-1. The Interface Definition That Will Be Compiled to a DLL
using System;

namespace General \,,
{
public interface IMyRemoteObject
{
void setValue (int newval);
int getvalue();
}
}

The client that is shown in Listing 3-2 provides the means for opening
a connection to the server and tries to set and retrieve the instance values
of the server-side remote object. You'll have to add a reference to
System.Runtime.Remoting.DLL to your Visual Studio .NET project for
this example.

Listing 3-2. A Simple Client Application
using System;

using System.Runtime.Remoting;

using General;

using System.Runtime.Remoting.Channels.Http;
using System.Runtime.Remoting.Channels;

namespace Client

{

class Client

{

static void Main(string[] args)

{
HttpChannel channel = new HttpChannel();
ChannelServices.RegisterChannel(channel);

IMyRemoteObject obj = (IMyRemoteObject) Activator.GetObject(
typeof(IMyRemoteObject),
"http://localhost:1234/MyRemoteObject.soap");

Console.WriteLine("Client.Main(): Reference to rem. obj acquired");

29

Administrator

Administrator
namespace General
{
public interface IMyRemoteObject
{
void setValue (int newval);
int getValue();
}
}

Administrator
Listing 3-2. A Simple Client Application
using System;
using System.Runtime.Remoting;
using General;
using System.Runtime.Remoting.Channels.Http;
using System.Runtime.Remoting.Channels;
namespace Client
{
class Client
{
static void Main(string[] args)
{
HttpChannel channel = new HttpChannel();
ChannelServices.RegisterChannel(channel);
IMyRemoteObject obj = (IMyRemoteObject) Activator.GetObject(
typeof(IMyRemoteObject),
“http://localhost:1234/MyRemoteObject.soap”);
Console.WriteLine(“Client.Main(): Reference to rem. obj acquired”);

Administrator
HttpChannel channel = new HttpChannel();
ChannelServices.RegisterChannel(channel);

Administrator
Activator.GetObject(

Administrator
IMyRemoteObject

Administrator
typeof(IMyRemoteObject),
“http://localhost:1234/MyRemoteObject.soap”);

Administrator
using General;

Administrator
namespace General

Administrator
General.dll

Administrator
The Interface Definition That Will Be Compiled to a DLL

Administrator
add a reference

Administrator
System.Runtime.Remoting.DLL

Administrator

Administrator

Chapter 3

int tmp = obj.getValue();
Console.WritelLine("Client.Main(): Original server side value: {0}",tmp);

Console.Writeline("Client.Main(): Will set value to 42");
obj.setValue(42);

tmp = obj.getValue();
Console.Writeline("Client.Main(): New server side value {0}", tmp);

Console.ReadLine();

30

The sample client will read and output the server’s original value, change it
to 42, and then read and output it again.

@ngleCall OhjectD

For SingleCall objects the server will create a single object, execute the method,
and destroy the object again. SingleCall objects are registered at the server using
the following statement:

RemotingConfiguration.RegisterWellknownServiceType(
typeof(<YourClass>), "<URL>",
WellKnownObjectMode.SingleCall);

Objects of this kind can obviously not hold any state information, as all inter-
nal variables will be discarded at the end of the method call. The reason for using
objects of this kind is that they can be deployed in a very scalable manner. These
objects can be located on different computers with an intermediate multiplex-
ing/load-balancing device, which would not be possible when using stateful
objects. The complete server for this example can be seen in Listing 3-3.

v

Listing 3-3. The Complete Server Implementation
using System;

using System.Runtime.Remoting;

using General;

using System.Runtime.Remoting.Channels.Http;
using System.Runtime.Remoting.Channels;

Administrator
int tmp = obj.getValue();

Administrator
int tmp = obj.getValue();
Console.WriteLine(“Client.Main(): Original server side value: {0}”,tmp);
Console.WriteLine(“Client.Main(): Will set value to 42”);
obj.setValue(42);
tmp = obj.getValue();
Console.WriteLine(“Client.Main(): New server side value {0}”, tmp);
Console.ReadLine();
}
}
}

Administrator
SingleCall Objects

Administrator
SingleCall

Administrator
server will create a single object,

Administrator
execute the method,

Administrator
destroy the object again.

Administrator
RemotingConfiguration.RegisterWellKnownServiceType(
typeof(<YourClass>), “<URL>”,
WellKnownObjectMode.SingleCall);

Administrator
Listing 3-3. The Complete Server Implementation
using System;
using System.Runtime.Remoting;
using General;
using System.Runtime.Remoting.Channels.Http;
using System.Runtime.Remoting.Channels;

Administrator
The complete server for this example can be seen in Listing 3-3.

Administrator
scalable manner.

Administrator
using General;

Administrator
WellKnownObjectMode.SingleCall);

Administrator

Remoting in Action

namespace Server

{

class MyRemoteObject: MarshalByRefObject, IMyRemoteObject

{

int myvalue;

public MyRemoteObject()

{
Console.WriteLine("MyRemoteObject.Constructor: New Object created");
}
public MyRemoteObject(int startvalue)
{
Console.WritelLine("MyRemoteObject.Constructor: .ctor called with {o}",
startvalue);
myvalue = startvalue;
}
public void setValue(int newval)
{
Console.WriteLine("MyRemoteObject.setValue(): old {0} new {1}",
myvalue,newval);
myvalue = newval;
}
public int getValue()
{
Console.WriteLine("MyRemoteObject.getValue(): current {0}",myvalue);
return myvalue;
}

class ServerStartup

{

static void Main(string[] args)
{

Console.WriteLine ("ServerStartup.Main(): Server started");

HttpChannel chnl = new HttpChannel(1234);

ChannelServices.RegisterChannel(chnl);

RemotingConfiguration.RegisterWellKnownServiceType(
typeof(MyRemoteObject),
"MyRemoteObject.soap"”,
WellKnownObjectMode.SingleCall);

31

Administrator
namespace Server
{
class MyRemoteObject: MarshalByRefObject, IMyRemoteObject
{
int myvalue;
public MyRemoteObject()
{
Console.WriteLine(“MyRemoteObject.Constructor: New Object created”);
}
public MyRemoteObject(int startvalue)
{
Console.WriteLine(“MyRemoteObject.Constructor: .ctor called with {0}”,
startvalue);
myvalue = startvalue;
}
public void setValue(int newval)
{
Console.WriteLine(“MyRemoteObject.setValue(): old {0} new {1}”,
myvalue,newval);
myvalue = newval;
}
public int getValue()
{
Console.WriteLine(“MyRemoteObject.getValue(): current {0}”,myvalue);
return myvalue;
}
}
class ServerStartup
{
static void Main(string[] args)
{
Console.WriteLine (“ServerStartup.Main(): Server started”);
HttpChannel chnl = new HttpChannel(1234);
ChannelServices.RegisterChannel(chnl);
RemotingConfiguration.RegisterWellKnownServiceType(
typeof(MyRemoteObject),
“MyRemoteObject.soap”,
WellKnownObjectMode.SingleCall);

Administrator
MyRemoteObject:

Administrator
ServerStartup

Administrator
RemotingConfiguration.RegisterWellKnownServiceType(
typeof(MyRemoteObject),
“MyRemoteObject.soap”,
WellKnownObjectMode.SingleCall);

Administrator
HttpChannel chnl = new HttpChannel(1234);
ChannelServices.RegisterChannel(chnl);

Administrator
Main(

Administrator
class ServerStartup
{
static void Main(string[] args)
{
Console.WriteLine (“ServerStartup.Main(): Server started”);
HttpChannel chnl = new HttpChannel(1234);
ChannelServices.RegisterChannel(chnl);
RemotingConfiguration.RegisterWellKnownServiceType(
typeof(MyRemoteObject),
“MyRemoteObject.soap”,
WellKnownObjectMode.SingleCall);

Administrator
namespace Server

Administrator

Chapler 3

// the server will keep running until keypress.
Console.ReadlLine();

32

When the program is run, the output in Figure 3-1 will appear on the client.

Remoting.NET Chio3" SingleCall0bjeck

Client.Main<>»: Reference to rem.ohj. acguired
Client.Main<»: Original server side value: B
Client.Main<>»: Will set value to 42
Client.Main<>: Hew server side value @

Figure 3-1. Client’s output for a SingleCall object

What’s happening is exactly what you'd expect from the previous
description—even though it might not be what you'd normally expect from an
object-oriented application. The reason for the server returning a value
of 0 after setting the value to 42 is that your client is talking to a completely 4/
different object. Figure 3-2 shows the server’s output.

Administrator
// the server will keep running until keypress.
Console.ReadLine();
}
}
}
Chapter 3

Administrator
// the server will keep running until keypress.
Console.ReadLine();
}
}
}

Administrator
When the program is run, the output in Figure 3-1 will appear on the client.

Administrator
The reason for the server returning a value
of 0 after setting the value to 42 is that your client is talking to a completely
different object.

Administrator
Client’s output for a SingleCall object

Administrator

\ Remoting. NET' Cho34SingleCallDbjec

Serveritartup.Main{: Server started
MyRemoteObject.Constructor: Mew Object created
MHyRemoteObject .Constructor: Hew Object created
MyRemoteOhject.getValuel>: current A
MHyRemoteObject .Constructor: Hew Object created
MyRemoteObject.setUalue(>: old @ new 42
MHyRemoteObject .Constructor: Hew Object created

MyRemoteOhbhject.getlValuel>: current A

Figure 3-2. Server’s output for a SingleCall object

This indicates that the server will really create one object for each call (and
an additional object during the first call as well).

- Singleton Objects >

Only one instance of a Singleton object can exist at any given time. When receiv-
ing a client’s request, the server checks its internal tables to see if an instance of
this class already exists; if not, this object will be created and stored in the table.
After this check the method will be executed. The server guarantees that there
will be exactly one or no instance available at a given time.

NOTE Singletons have an associated lifetime as well, so be sure to override
the standard lease time if you don’t want your object to be destroyed after
some minutes. (More on this later in this chapter.)

For registering an object as a Singleton, you can use the following lines
of code:

RemotingConfiguration.RegisterWellknownServiceType(
typeof(<YourClass>), "<URL>",
WellKnownObjectMode.Singleton);

Remoting in Action

33

Administrator
Server’s output for a SingleCall object

Administrator
This indicates that the server will really create one object for each call (and
an additional object during the first call as well).

Administrator
Singleton Objects

Administrator
Only one instance of a Singleton object can exist at any given time.

Administrator
The server guarantees that there
will be exactly one or no instance available at a given time.

Administrator
WellKnownObjectMode.Singleton);

Administrator
RemotingConfiguration.RegisterWellKnownServiceType(
typeof(<YourClass>), “<URL>”,
WellKnownObjectMode.Singleton);

Chapter 3

34

The ServerStartup class in your sample server will be changed accordingly:

v

class ServerStartup
{
static void Main(string[] args)

{

Console.WritelLine ("ServerStartup.Main(): Server started");

HttpChannel chnl = new HttpChannel(1234);

ChannelServices.RegisterChannel(chnl);

RemotingConfiguration.RegisterlWellKnownServiceType(
typeof(MyRemoteObject),
"MyRemoteObject.soap”,
WellKnownObjectMode.Singleton);

// the server will keep running until keypress.
Console.Readline();

When the client is started, the output will show a behavior consistent with
the “normal” object-oriented way of thinking; the value that is returned is the
same value you set two lines before (see Figure 3-3).

" Remoting.MET, Ch03% SingletonObjeck:

Client _Main<>: Reference to rem.ohj. acquired
Client.Main<>: Original server side value: B
Client.Main<»: Will set value to 42

Client _Main<»: MHew server side value 42

Figure 3-3. Client’s output for a Singleton object

The same is true for the server, as Figure 3-4 shows.

Administrator
class ServerStartup
{
static void Main(string[] args)
{
Console.WriteLine (“ServerStartup.Main(): Server started”);
HttpChannel chnl = new HttpChannel(1234);
ChannelServices.RegisterChannel(chnl);
RemotingConfiguration.RegisterWellKnownServiceType(
typeof(MyRemoteObject),
“MyRemoteObject.soap”,
WellKnownObjectMode.Singleton);
// the server will keep running until keypress.
Console.ReadLine();
}
}

Administrator
class ServerStartup

Administrator
HttpChannel chnl = new HttpChannel(1234);
ChannelServices.RegisterChannel(chnl);
RemotingConfiguration.RegisterWellKnownServiceType(
typeof(MyRemoteObject),
“MyRemoteObject.soap”,
WellKnownObjectMode.Singleton);

Administrator
the value that is returned is the
same value you set two lines before

Administrator
Client’s output for a Singleton object

Administrator

Remoting in Action

,Remoting.MET' Ch03% SingletonDbjeck

ServerStartup.Main{): Server started
MyRemoteObject.Constructor: Mew Ohject created
MyRemoteObject .getlUalue{>: current B
MyRemoteObject.setlUaluedC?>: old B new 42
MyRemoteObject .getlUalue(>: current 42

Figure 3-4. Server’s output for a Singleton object

An interesting thing happens when a second client is started afterwards. This vV
client will receive a value of 42 directly after startup without your setting this
value beforehand (see Figures 3-5 and 3-6). This is because only one instance
exists at the server, and the instance will stay alive even after the first client
is disconnected.

TIP Use Singletons when you want to share data or resources
between clients.

emoting.NET' Ch03% SingletonDbjeck

Client.Main<>: Reference to rem.ohj. acguired
Client.Main<>: Original server side value: 42
Client.Main<>: Will zet value to 42
Client.Main<>: Hew server side value 42

Figure 3-5. The second client’s output when calling a Singleton object

35

Administrator
Server’s output for a Singleton object

Administrator
An interesting thing happens when a second client is started afterwards.

Administrator

Administrator

Administrator

Administrator

Administrator
TIP Use Singletons when you want to share data or resources
between clients.

Administrator
The second client’s output when calling a Singleton object

Administrator

Chapter 3

Remoting.NET%Ch034SingletonObjeck:

ServerStartup.Main{>: Server started
MyRemoteObject.Constructor: Mew Object created
MyRemoteObject .getUalue<>: current @
MyRemoteObject.setUaluel>: old @ new 42
MyRemoteObject .getUalue{>: current 42
MyRemoteOhbhject.getlValue<>: current 42
MyRemoteObject .setlUalue<>: old 42 new 42

MyRemoteOhbhject.getlValue<>: current 42

Figure 3-6. Server’s output after the second call to a Singleton object

 published Objects
(When using either SingleCall or Singleton objects, the necessary instancesill be l
created dynamically during a client’s request/ When you want to publish a certain

object instance that’s been precreated on the server-—for example, one using
anondefault constructor—neither alternative provides you with a solution.
In this case you can use RemotingServices.Marshal() to publish a given

instance that behaves like a Singleton afterwards. The only difference is that the
object has to already exist at the server before publication.

v
YourObject obj = new YourObject(<your params for constr>);
RemotingServices.Marshal(obj,"YourUrl.soap");
The code in the ServerStartup class will look like this:
v

class ServerStartup

{

static void Main(string[] args)

{

Console.WriteLine ("ServerStartup.Main(): Server started");

HttpChannel chnl = new HttpChannel(1234);
ChannelServices.RegisterChannel(chnl);

MyRemoteObject obj = new MyRemoteObject(4711);
RemotingServices.Marshal(obj,"MyRemoteObject.soap");

36

Administrator
Server’s output after the second call to a Singleton object

Administrator
Published Objects

Administrator
When you want to publish a certain
object instance that’s been precreated on the server

Administrator
neither alternative provides you with a solution.

Administrator

Administrator

Administrator
The only difference is that the
object has to already exist at the server before publication.

Administrator
RemotingServices.Marshal(obj,”YourUrl.soap”);

Administrator
YourObject obj = new YourObject(<your params for constr>);
RemotingServices.Marshal(obj,”YourUrl.soap”);

Administrator
class ServerStartup
{
static void Main(string[] args)
{
Console.WriteLine (“ServerStartup.Main(): Server started”);
HttpChannel chnl = new HttpChannel(1234);
ChannelServices.RegisterChannel(chnl);
MyRemoteObject obj = new MyRemoteObject(4711);
RemotingServices.Marshal(obj,”MyRemoteObject.soap”);

Administrator
class ServerStartup

Administrator
Main(

Administrator
HttpChannel chnl = new HttpChannel(1234);
ChannelServices.RegisterChannel(chnl);
MyRemoteObject obj = new MyRemoteObject(4711);
RemotingServices.Marshal(obj,”MyRemoteObject.soap”);

Administrator

Administrator

Administrator

Administrator

// the server will keep running until keypress.
Console.ReadLine();

Remdying in Action

When the client is run, you can safely expect to get a value of 4711 on the first

request because you started the server with this initial value (see Figures 3-7
and 3-8).

,REmuting.HET"-.,Ehl]3"-.,PuhIishedl]hjeclf

Client.Main<>»: Reference to rem.ohj. acguired
Client .Main<»: Original server side value: 4711
Client .Main<»: Will set value to 42
Client.Main<»: Hew server side value 42

Figure 3-7. Client’s output when calling a published object

,Remoting.NET" Ch03'PublishedObject

Serveritartup.Mainc?: Server started
MyRemoteObject.Constructor: .ctor called with 4711
MyRemoteObject.getUalue(>: current 4711
MyRemoteOhject.setlValued>: old 4711 new 42
MyRemoteOhbhject.getValuel: current 42

Figure 3-8. Server’s output when publishing the object

v

37

Administrator
// the server will keep running until keypress.
Console.ReadLine();
}
}
Remoting

Administrator
Client’s output when calling a published object

Administrator
you can safely expect to get a value of 4711 on the first
request because you started the server with this initial value

Administrator
Server’s output when publishing the object

Administrator

Chapter 3

38

Gent—Acti vated Objects >

A client-activated object (CAO) behaves mostly the same way as does a “normal”
.NET object (or a COM object). When a creation request on the client is encoun-
tered (using Activator.CreateInstance() or the new operator), an activation
message is sent to the server, where a remote object is created. On the client

a proxy that holds the ObjRef to the server object is created like it is with SAOs.

client-activated objects liletime 1s managed Dy the same liletime service
used by SAOs, as shown later in this chapter. CAOs are so-called stateful objects;
an instance variable that has been set by the client can be retrieved again and will
contain the correct value.! These objects will store state information from one
method call to the other. CAOs are explicitly created by the client, so they can
have distinct constructors like normal .NET objects do.

Direct/Transparent Creation

The .NET Remoting Framework can be configured to allow client-activated
objects to be created like normal objects using the new operator. Unfortunately,
this manner of creation has one serious drawback: you cannot use shared inter-
faces or base classes. This means that you either have to ship the compiled
objects to your clients or use SoapSuds to extract the metadata

As shipping the implementation to your clients is neither feasible due to
deployment and versioning issues nor in support of the general idea of distrib-
uted applications, I refrain from delving heavily into this approach here.
Unfortunately, it’s not currently possible to call nondefault constructors when
using SoapSuds-generated metadata. When your application needs this function-
ality, you might choose the class factory-based approach (which is shown after
this example) or rely on SoapSuds’ -gc parameter to manually enhance the gen-
erated proxy (more on this parameter in Chapter 4).

In the following example, you'll use more or less the same class you did in the
previous examples; it will provide your client with a setValue() and getValue()
method to store and retrieve an int value as the object’s state. The metadata that
is needed for the client to create a reference to the CAO will be extracted with
SoapSuds.exe, about which you'll read more later in this chapter.

The reliance on SoapSuds allows you to develop the server application with-
out any need for up-front design of a shared assembly, therefore the server will
simply include the CAOs implementation. You can see this in Listing 3-4.

! The only exception from this rule lies in the object’s lifetime, which is managed completely
differently from the way it is in .NET generally or in COM.

Administrator
Client-Activated Objects

Administrator
A client-activated object (CAO) behaves mostly the same way as does a “normal”
.NET object (or a COM object). When a creation request on the client is encountered
(using Activator.CreateInstance() or the new operator), an activation
message is sent to the server, where a remote object is created. On the client
a proxy that holds the ObjRef to the server object is created like it is with SAOs.

Administrator
A client-activated object’s lifetime is managed by the same lifetime service
used by SAOs, as shown later in this chapter. CAOs are so-called stateful objects;
an instance variable that has been set by the client can be retrieved again and will
contain the correct value.1 These objects will store state information from one
method call to the other. CAOs are explicitly created by the client, so they can
have distinct constructors like normal .NET objects do.

Administrator
behaves

Administrator
normal”

Administrator
.NET object

Administrator
COM

Administrator
an activation
message is sent to the server, where a remote object is created.

Administrator
CAOs are so-called stateful objects;

Administrator
These objects will store state information from one
method call to the other.

Administrator
are explicitly created by the client,

Administrator
distinct constructors like normal .NET objects

Administrator
The .NET Remoting Framework can be configured to allow client-activated
objects to be created like normal objects using the new operator. Unfortunately,
this manner of creation has one serious drawback: you cannot use shared interfaces
or base classes. This means that you either have to ship the compiled
objects to your clients or use SoapSuds to extract the metadata.

Administrator
to allow client-activated

Administrator
objects to be created like normal objects using the new operator.

Administrator
cannot use shared interfaces

Administrator
base classes.

Administrator
SoapSuds

Administrator
it’s not currently possible to call nondefault constructors when
using SoapSuds-generated metadata.

Administrator
following example,

Administrator
setValue()

Administrator
getValue()

Administrator
to store and retrieve an int value as the object’s state.

Administrator
SoapSuds.exe,

Administrator
generated
proxy (more on this parameter in Chapter 4).
In the following example, you’ll use more or less the same class you did in the
previous examples; it will provide your client with a setValue() and getValue()
method to store and retrieve an int value as the object’s state. The metadata that
is needed for the client to create a reference to the CAO will be extracted with
SoapSuds.exe, about which you’ll read more later in this chapter.

Remoting in Action

Listing 3-4. A Server That Offers a Client-Activated Object
using System;

using System.Runtime.Remoting;

using System.Runtime.Remoting.Channels.Http;

using System.Runtime.Remoting.Channels;

namespace Server

{
public class MyRemoteObject: MarshalByRefObject
{
int myvalue;
public MyRemoteObject(int val)
{
Console.WriteLine("MyRemoteObject.ctor(int) called");
myvalue = val;
}
public MyRemoteObject()
{
Console.WriteLine("MyRemoteObject.ctor() called");
}
public void setValue(int newval)
{
Console.WriteLine("MyRemoteObject.setValue(): old {0} new {1}",
myvalue,newval);
myvalue = newval;
}
public int getValue()
{
Console.WriteLine("MyRemoteObject.getValue(): current {0}",myvalue);
return myvalue;
}
}

class ServerStartup

{
static void Main(string[] args)
{

Console.WritelLine ("ServerStartup.Main(): Server started");

39

Administrator
Listing 3-4. A Server That Offers a Client-Activated Object
using System;
using System.Runtime.Remoting;
using System.Runtime.Remoting.Channels.Http;
using System.Runtime.Remoting.Channels;
namespace Server
{
public class MyRemoteObject: MarshalByRefObject
{
int myvalue;
public MyRemoteObject(int val)
{
Console.WriteLine(“MyRemoteObject.ctor(int) called”);
myvalue = val;
}
public MyRemoteObject()
{
Console.WriteLine(“MyRemoteObject.ctor() called”);
}
public void setValue(int newval)
{
Console.WriteLine(“MyRemoteObject.setValue(): old {0} new {1}”,
myvalue,newval);
myvalue = newval;
}
public int getValue()
{
Console.WriteLine(“MyRemoteObject.getValue(): current {0}”,myvalue);
return myvalue;
}
}
class ServerStartup
{
static void Main(string[] args)
{
Console.WriteLine (“ServerStartup.Main(): Server started”);

Administrator
namespace Server

Administrator
MyRemoteObject:

Administrator
class ServerStartup

Administrator
Main(

Administrator
class ServerStartup
{
static void Main(string[] args)
{
Console.WriteLine (“ServerStartup.Main(): Server started”);

Chaer

HttpChannel chnl = new HttpChannel(1234);
ChannelServices.RegisterChannel(chnl);

RemotingConfiguration.ApplicationName = "MyServer";
RemotingConfiguration.RegisterActivatedServiceType(
typeof(MyRemoteObject));

// the server will keep running until keypress.
Console.ReadlLine();

On the server you now have the new startup code needed to register a chan-
nel and this class as a client-activated object. When adding a Type to the list of
activated services, you cannot provide a single URL for each object; instead, you
have to set the RemotingConfiguration.ApplicationName to a string value that
identj TSCIVEL.

The URL to your remote object will be
http://<hostname>:<port>/<ApplicationName>. What happens
behind the scenes is that a general activation SAO is automatically
created by the framework and published at the URL
http://<hostname>:<port>/<ApplicationName>/RemoteActivationService.rem.
This SAO will take the clients’ requests to create a new instance and pass it
the g framework.

To extract the necessary interface information, you can run the following
SoapSuds command line in the directory where the server.exe assembly has
been placed:

soapsuds -ia:server -nowp -oa:generated metadata.dll

NOTE You should perform all command-line operations from the Visual
Studio command prompt, which you can bring up by selecting Start >
Programs > Microsoft Visual Studio .NET > Visual Studio .NET Tools.
This command prompt sets the correct “path” variable to include the .NET
SDK tools.

The resulting generated_metadata.dll assembly must be referenced by the
client. The sample client also registers the CAO and acquires two references to
(different) remote objects. It then sets the value of those objects and outputs
them again, which shows that you really are dealing with two different objects.

As you can see in Listing 3-5, the activation of the remote object is done with
the new operator. This is possible because you registered the Type as

40

Administrator
RemotingConfiguration.ApplicationName = “MyServer”;
RemotingConfiguration.RegisterActivatedServiceType(
typeof(MyRemoteObject));

Administrator
HttpChannel chnl = new HttpChannel(1234);
ChannelServices.RegisterChannel(chnl);
RemotingConfiguration.ApplicationName = “MyServer”;
RemotingConfiguration.RegisterActivatedServiceType(
typeof(MyRemoteObject));
// the server will keep running until keypress.
Console.ReadLine();
}
}
}
Chapter 3

Administrator
HttpChannel chnl = new HttpChannel(1234);
ChannelServices.RegisterChannel(chnl);
RemotingConfiguration.ApplicationName = “MyServer”;
RemotingConfiguration.RegisterActivatedServiceType(
typeof(MyRemoteObject));
// the server will keep running until keypress.
Console.ReadLine();
}
}
}
3

Administrator
On the server

Administrator
now have the new startup code needed to register a channel

Administrator
this class as a client-activated object.

Administrator
instead,

Administrator
have to set the RemotingConfiguration.ApplicationName to a string value

Administrator
identifies your server.

Administrator

Administrator
have to set the RemotingConfiguration.ApplicationName to a string value that
identifies your server.
The URL to your remote object will be
http://<hostname>:<port>/<ApplicationName>. What happens
behind the scenes is that a general activation SAO is automatically
created by the framework and published at the URL
http://<hostname>:<port>/<ApplicationName>/RemoteActivationService.rem.
This SAO will take the clients’ requests to create a new instance and pass it on to
the remoting framework.
To extract the necessary interface information, you can run the following

Administrator
To extract the necessary interface information,

Administrator
can run the following

Administrator
SoapSuds command line

Administrator
soapsuds -ia:server -nowp -oa:generated_metadata.dll

Administrator
soapsuds -ia:server -nowp -oa:generated_metadata.dll

Administrator
The resulting

Administrator
generated_metadata.dll assembly must be referenced by the

Administrator
client.

Administrator
the activation of the remote object is done with

Administrator
the new operator.

Administrator
Type

ActivatedClientType before. The runtime now knows that whenever your appli-
cation creates an instance of this class, it instead should create a reference to
a remote object running on the server.

Remoting in Action

Listing 3-5. The Client Accesses the Client-Activated Object

using
using
using
using
using
using

System;

System.Runtime.Remoting;

System.Runtime.Remoting.Channels.Http;

System.Runtime.Remoting.Channels;

System.Runtime.Remoting.Activation;

Server;

namespace Client

{

class Client

{

static void Main(string[] args)

{

HttpChannel channel = new HttpChannel();
ChannelServices.RegisterChannel(channel);

RemotingConfiguration.RegisterActivatedClientType(
typeof(MyRemoteObject),
"http://localhost:1234/MyServer");

Console.WritelLine("Client.Main(): Creating first object");
MyRemoteObject obji = new MyRemoteObject();
obji.setValue(42);

Console.WriteLine("Client.Main(): Creating second object");
MyRemoteObject obj2 = new MyRemoteObject();

obj2.setValue(4711);

Console.WriteLine("Obj1.getValue(): {0}",obji.getValue());
Console.WriteLine("Obj2.getValue(): {0}",obj2.getValue());

Console.Readline();

When this code sample is run, you will see the same behavior as when using
local objects—the two instances have their own state (Figure 3-9). As expected,
on the server two different objects are created (Figure 3-10).

41

Administrator
ActivatedClientType

Administrator
runtime now knows that whenever your application
creates an instance of this class, it instead should create a reference to
a remote object running on the server.

Administrator
Listing 3-5. The Client Accesses the Client-Activated Object
using System;
using System.Runtime.Remoting;
using System.Runtime.Remoting.Channels.Http;
using System.Runtime.Remoting.Channels;
using System.Runtime.Remoting.Activation;
using Server;
namespace Client
{
class Client
{
static void Main(string[] args)
{
HttpChannel channel = new HttpChannel();
ChannelServices.RegisterChannel(channel);
RemotingConfiguration.RegisterActivatedClientType(
typeof(MyRemoteObject),
“http://localhost:1234/MyServer”);
Console.WriteLine(“Client.Main(): Creating first object”);
MyRemoteObject obj1 = new MyRemoteObject();
obj1.setValue(42);
Console.WriteLine(“Client.Main(): Creating second object”);
MyRemoteObject obj2 = new MyRemoteObject();
obj2.setValue(4711);
Console.WriteLine(“Obj1.getValue(): {0}”,obj1.getValue());
Console.WriteLine(“Obj2.getValue(): {0}”,obj2.getValue());
Console.ReadLine();
}
}
}

Administrator
namespace Client

Administrator
Main(

Administrator
Client

Administrator
HttpChannel channel = new HttpChannel();
ChannelServices.RegisterChannel(channel);
RemotingConfiguration.RegisterActivatedClientType(
typeof(MyRemoteObject),
“http://localhost:1234/MyServer”);

Administrator
MyRemoteObject obj1 = new MyRemoteObject();
obj1.setValue(42);

Administrator
MyRemoteObject obj2 = new MyRemoteObject();
obj2.setValue(4711);

Administrator
Console.WriteLine(“Obj1.getValue(): {0}”,obj1.getValue());
Console.WriteLine(“Obj2.getValue(): {0}”,obj2.getValue());

Chapter 3

42

Remoting.MET' Cho3% ClientAckivated'

Client .Main<>: Creating first ohject
Client.Main<>»: Creating second ohject
Objl.getlUalued<>: 42

0hj2.getValued>: 4711

Figure 3-9. Client-side output when using CAOs

Remoting.METY Cho3 ClientActivated'

ServerStartup.Main<>: Server started
MyRemoteOhject.ctori? called
MyRemoteObject.zetlUalueC?>: old B new 42
MyRemoteOhject.ctor{? called
MyRemoteObject .setlUalued>: old B new 4711
MyRemoteObject.getlUalue?: current 42
MyRemoteObject .getlUalue{>: current 4711

Figure 3-10. Server-side output when using CAOs

@ing the Factory Design Pattern >

From what you've read up to this point, you know that SoapSuds cannot extract
the metadata for nondefault constructors. When your application’s design relies
on this functionality, you can use a factory design pattern, in which you’ll include
a SAO providing methods that return new instances of the CAO.

NOTE You might also just ship the server-side implementation assembly
to the client and reference it directly. But as I stated previously, this is
clearly against all distributed application design principles!

Administrator
Figure 3-9. Client-

Administrator
side output when using CAOs

Administrator
Figure 3-10. Server-side output when using CAOs

Administrator
Using the Factory Design Pattern

Administrator
SoapSuds cannot extract

Administrator
the metadata for nondefault constructors.

Administrator

Administrator

Administrator

Administrator
Here, I just give you a short introduction to the factory design pattern.
Basically you have two classes, one of which is a factory, and the other is the real
object you want to use. Due to constraints of the real class, you will not be able to
construct it directly, but instead will have to call a method on the factory, which
creates a new instance and passes it to the client.

Listing 3-6 shows you a fairly simple implementation of this design pattern.

Remoting in Action

Listing 3-6. The Factory Design Pattern
using System;

namespace FactoryDesignPattern

class MyClass

{
}
class MyFactory
{
public MyClass getNewInstance()
{
return new MyClass();
}
}
class MyClient
{
static void Main(string[] args)
{
// creation using "new"
MyClass obj1 = new MyClass();
// creating using a factory
MyFactory fac = new MyFactory();
MyClass obj2 = fac.getNewInstance();
}
}

When bringing this pattern to remoting, you have to create a factory that’s

running as a server-activated object (ideally a Singleton) that has a method
returning a new instance of the “real class” (the CAO) to the client. This gives you
a huge advantage in that you don’t have to distribute the implementation to the
client system or manually tweak the output from SoapSuds -gc.

43

Administrator
Listing 3-6. The Factory Design Pattern
using System;
namespace FactoryDesignPattern
{
class MyClass
{
}
class MyFactory
{
public MyClass getNewInstance()
{
return new MyClass();
}
}
class MyClient
{
static void Main(string[] args)
{
// creation using “new”
MyClass obj1 = new MyClass();
// creating using a factory
MyFactory fac = new MyFactory();
MyClass obj2 = fac.getNewInstance();
}
}
}

Administrator
namespace FactoryDesignPattern

Administrator
MyClass

Administrator
MyFactory

Administrator
MyClient

Administrator
MyFactory fac = new MyFactory();
MyClass obj2 = fac.getNewInstance();

Administrator
you have to create a factory that’s
running as a server-activated object (ideally a Singleton) that has a method
returning a new instance of the “real class” (the CAO) to the client.

Chapter 3

NOTE Distributing the implementation to the client is not only a bad
choice due to deployment issues, it also makes it possible for the client user
to disassemble your object’s codes using ILDASM or some other tool.

You have to design your factory SAO using a shared assembly which contains
the interface information (or abstract base classes) which are implemented by
your remote objects. This is shown in Listing 3-7.

Listing 3-7. The Shared Interfaces for the Factory Design Pattern
using System;

namespace General

{
public interface IRemoteObject

{

void setValue(int newval);
int getValue();

}
public interface IRemoteFactory
{
IRemoteObject getNewInstance();
IRemoteObject getNewInstance(int initvalue);
}

On the server you now have to implement both interfaces and create
a startup code that registers the factory as a SAO. You don’t have to register the
CAO in this case because every MarshalByRefObject can be returned by a method
call; the framework takes care of the necessity to remote each call itself, as shown
in Listing 3-8.

Listing 3-8. The Server-Side Factory Pattern’s Implementation
using System;

using System.Runtime.Remoting;

using System.Runtime.Remoting.Channels.Http;

using System.Runtime.Remoting.Channels;

using System.Runtime.Remoting.Messaging;

using General;

44

Administrator
You have to design your factory SAO using a shared assembly which contains
the interface information

Administrator
Listing 3-7. The Shared Interfaces for the Factory Design Pattern
using System;
namespace General
{
public interface IRemoteObject
{
void setValue(int newval);
int getValue();
}
public interface IRemoteFactory
{
IRemoteObject getNewInstance();
IRemoteObject getNewInstance(int initvalue);
}
}

Administrator
using System;

Administrator
General

Administrator
IRemoteObject

Administrator
public interface IRemoteFactory
{
IRemoteObject getNewInstance();
IRemoteObject getNewInstance(int initvalue);
}

Administrator
Listing 3-8. The Server-Side Factory Pattern’s Implementation
using System;
using System.Runtime.Remoting;
using System.Runtime.Remoting.Channels.Http;
using System.Runtime.Remoting.Channels;
using System.Runtime.Remoting.Messaging;
using General;

Administrator
On the server you now have to implement both interfaces and create
a startup code that registers the factory as a SAO. You don’t have to register the
CAO in this case because every MarshalByRefObject can be returned by a method
call; the framework takes care of the necessity to remote each call itself, as shown
in Listing 3-8.

Remoting in Action

namespace Server

{
class MyRemoteObject: MarshalByRefObject, IRemoteObject
{
int myvalue;
public MyRemoteObject(int val)
{
Console.WritelLine("MyRemoteObject.ctor(int) called");
myvalue = val;
}
public MyRemoteObject()
{
Console.WritelLine("MyRemoteObject.ctor() called");
}
public void setValue(int newval)
{
Console.WriteLine("MyRemoteObject.setValue(): old {0} new {1}",
myvalue,newval);
myvalue = newval;
}
public int getValue()
{
Console.WritelLine("MyRemoteObject.getValue(): current {0}",myvalue);
return myvalue;
}
}

class MyRemoteFactory: MarshalByRefObject,IRemoteFactory

{
public MyRemoteFactory() {
Console.WriteLine("MyRemoteFactory.ctor() called");

}

public IRemoteObject getNewInstance()

{
Console.WriteLine("MyRemoteFactory.getNewInstance() called");
return new MyRemoteObject();

}

45

Administrator
namespace Server
{
class MyRemoteObject: MarshalByRefObject, IRemoteObject
{
int myvalue;
public MyRemoteObject(int val)
{
Console.WriteLine(“MyRemoteObject.ctor(int) called”);
myvalue = val;
}
public MyRemoteObject()
{
Console.WriteLine(“MyRemoteObject.ctor() called”);
}
public void setValue(int newval)
{
Console.WriteLine(“MyRemoteObject.setValue(): old {0} new {1}”,
myvalue,newval);
myvalue = newval;
}
public int getValue()
{
Console.WriteLine(“MyRemoteObject.getValue(): current {0}”,myvalue);
return myvalue;
}
}
class MyRemoteFactory: MarshalByRefObject,IRemoteFactory
{
public MyRemoteFactory() {
Console.WriteLine(“MyRemoteFactory.ctor() called”);
}
public IRemoteObject getNewInstance()
{
Console.WriteLine(“MyRemoteFactory.getNewInstance() called”);
return new MyRemoteObject();
}

Administrator
namespace Server

Administrator
MyRemoteObject:

Administrator
MyRemoteFactory:

Administrator
IRemoteObject

Administrator
getNewInstance()

Administrator
return new MyRemoteObject();

Chaer3

public IRemoteObject getNewInstance(int initvalue)

{
Console.WritelLine("MyRemoteFactory.getNewInstance(int) called");
return new MyRemoteObject(initvalue);

}

}
class ServerStartup
{
static void Main(string[] args)
{
Console.Writeline ("ServerStartup.Main(): Server started");
HttpChannel chnl = new HttpChannel(1234);
ChannelServices.RegisterChannel(chnl);
RemotingConfiguration.RegisterWellKnownServiceType(
typeof(MyRemoteFactory),
"factory.soap”,
WellKnownObjectMode.Singleton);
// the server will keep running until keypress.
Console.ReadlLine();
}
}
}

The client, which is shown in Listing 3-9, works a little bit differently from the
previous one as well. It creates a reference to a remote SAO using
Activator.GetObject(), upon which it places two calls to getNewInstance() to
acquire two different remote CAOs.

Listing 3-9. The Client Uses the Factory Pattern
using System;

using System.Runtime.Remoting;

using System.Runtime.Remoting.Channels.Http;
using System.Runtime.Remoting.Channels.Tcp;
using System.Runtime.Remoting.Channels;

using General;

46

Administrator
public IRemoteObject getNewInstance(int initvalue)
{
Console.WriteLine(“MyRemoteFactory.getNewInstance(int) called”);
return new MyRemoteObject(initvalue);
}
}
class ServerStartup
{
static void Main(string[] args)
{
Console.WriteLine (“ServerStartup.Main(): Server started”);
HttpChannel chnl = new HttpChannel(1234);
ChannelServices.RegisterChannel(chnl);
RemotingConfiguration.RegisterWellKnownServiceType(
typeof(MyRemoteFactory),
“factory.soap”,
WellKnownObjectMode.Singleton);
// the server will keep running until keypress.
Console.ReadLine();
}
}
}
Chapter 3

Administrator
class ServerStartup
{
static void Main(string[] args)
{
Console.WriteLine (“ServerStartup.Main(): Server started”);
HttpChannel chnl = new HttpChannel(1234);
ChannelServices.RegisterChannel(chnl);
RemotingConfiguration.RegisterWellKnownServiceType(
typeof(MyRemoteFactory),
“factory.soap”,
WellKnownObjectMode.Singleton);
// the server will keep running until keypress.
Console.ReadLine();
}
}
}

Administrator
IRemoteObject

Administrator
getNewInstance(

Administrator
class ServerStartup

Administrator
return new MyRemoteObject(initvalue);

Administrator
HttpChannel chnl = new HttpChannel(1234);
ChannelServices.RegisterChannel(chnl);
RemotingConfiguration.RegisterWellKnownServiceType(
typeof(MyRemoteFactory),
“factory.soap”,
WellKnownObjectMode.Singleton);

Administrator
Main(

Administrator
It creates a reference to a remote SAO using
Activator.GetObject(), upon which it places two calls to getNewInstance() to
acquire two different remote CAOs.

Administrator
Listing 3-9. The Client Uses the Factory Pattern
using System;
using System.Runtime.Remoting;
using System.Runtime.Remoting.Channels.Http;
using System.Runtime.Remoting.Channels.Tcp;
using System.Runtime.Remoting.Channels;
using General;

Administrator
using General;

namespace Client

{

class Client
{
static void Main(string[] args)
{
HttpChannel channel = new HttpChannel();
ChannelServices.RegisterChannel(channel);

Console.WritelLine("Client.Main(): Creating factory");

IRemoteFactory fact = (IRemoteFactory) Activator.GetObject(
typeof(IRemoteFactory),
"http://localhost:1234/factory.soap");

Console.WriteLine("Client.Main(): Acquiring first object from factory");

IRemoteObject obji = fact.getNewInstance();

obj1.setValue(42);

Console.WriteLine("Client.Main(): Acquiring second object from " +
"factory");

IRemoteObject obj2 = fact.getNewInstance(4711);

Console.WriteLine("Obj1.getValue(): {0}",obj1.getValue());
Console.WriteLine("Obj2.getValue(): {0}",obj2.getValue());

Console.Readline();

Remoting i

Action

When this sample is running, you see that the client behaves nearly identi-
cally to the previous example, but the second object’s value has been set using
the object’s constructor, which is called via the factory (Figure 3-11). On the
server a factory object is generated, and each new instance is created using
the overloaded getNewInstance() method (Figure 3-12).

47

Administrator
namespace Client
{
class Client
{
static void Main(string[] args)
{
HttpChannel channel = new HttpChannel();
ChannelServices.RegisterChannel(channel);
Console.WriteLine(“Client.Main(): Creating factory”);
IRemoteFactory fact = (IRemoteFactory) Activator.GetObject(
typeof(IRemoteFactory),
“http://localhost:1234/factory.soap”);
Console.WriteLine(“Client.Main(): Acquiring first object from factory”);
IRemoteObject obj1 = fact.getNewInstance();
obj1.setValue(42);
Console.WriteLine(“Client.Main(): Acquiring second object from “ +
“factory”);
IRemoteObject obj2 = fact.getNewInstance(4711);
Console.WriteLine(“Obj1.getValue(): {0}”,obj1.getValue());
Console.WriteLine(“Obj2.getValue(): {0}”,obj2.getValue());
Console.ReadLine();
}
}
}
Remoting in

Administrator
namespace Client

Administrator
Client

Administrator
Main(

Administrator
HttpChannel channel = new HttpChannel();
ChannelServices.RegisterChannel(channel);
Console.WriteLine(“Client.Main(): Creating factory”);
IRemoteFactory fact = (IRemoteFactory) Activator.GetObject(
typeof(IRemoteFactory),
“http://localhost:1234/factory.soap”);

Administrator
IRemoteObject obj1 = fact.getNewInstance();

Administrator
IRemoteObject obj2 = fact.getNewInstance(4711);

Administrator
client behaves nearly identically
to the previous example, but the second object’s value has been set using
the object’s constructor, which is called via the factory (Figure 3-11).

Chapter 3

 Remoting.NET' ChO3' ClientActivated¥iaFac

Client.Main{}: Creating factory

Client.Main(>: Acguiring firszt object from factory
Client.MainC(»: Acquiring second obhject from factory
0Objl.getUaluedl: 42

0bj2 .getUaluedd: 4711

Figure 3-11. Client-side output when using a factory object

 Remoting.NET" Cho3' ClientActivated¥iaFa

CerverStartup.Mainc}: Server started
MyRemoteFactory.ctor(? called
MuyRemoteFactory.getNewlnstance<» called
MyRemoteObject.ctor() called
MyRemoteObject.setUalue{>: old B new 42

MyRemoteFactory.getNeulnstancelint?> called
MuyRemoteOhject.ctorCint? called
MyRemoteObject .getUalue{?: current 42
MyRemoteObject.getUalue{>: current 4711

Figure 3-12, Server-side output when using a factory object

<Managing Lifetime

48

One point that can lead to a bit of confusion is the way an object’s lifetime is
managed in the .NET Remoting Framework. Common .NET objects are managed
using a garbage collection algorithm that checks if any other object is still using
a given instance. If not, the instance will be garbage collected and disposed.

When you apply this schema (or the COM way of reference counting) to
remote objects, it pings the client-side proxies to ensure that they are still using
the objects and that the application is still running (this is mainly what DCOM
did). The reason for this is that normally a client that has been closed unexpect-
edly or went offline due to a network outage might not have decremented the
server-side reference counter. Without some additional measure, these server-
side objects would in turn use the server’s resources forever. Unfortunately, when
your client is behind an HTTP proxy and is accessing your objects using SOAP
remoting, the server will not be able to contact the client in any way.

This constraint leads to a new kind of lifetime service: the lease-based object

lifetime. Basically this means that each server-side object is associated with

Administrator
Figure 3-11. Client-side output when using a factory object

Administrator
Figure 3-12. Server-side output when using a factory object

Administrator
Managing Lifetime
Figure 3-12. Server-side output when using a factory object

Administrator
Common .NET objects are managed
using a garbage collection

Administrator
When you apply this schema

Administrator
to

Administrator
remote objects,

Administrator
it pings the client-side proxies to ensure that they are still using
the objects and that the application is still running

Administrator
This constraint leads to a new kind of lifetime service:

Administrator
lease-based object

Administrator
lifetime.

Administrator

Administrator

a lease upon creation. This lease will have a time-to-live counter (which starts at
five minutes by default) that is decremented in certain intervals. In addition to
the initial time, a defined amount (two minutes in the default configuration) is
added to this time to live upon every method call a client places on the
remote object.

When this time reaches zero, the framework looks for any sponsors regis-
tered with this lease. A sponsoris an object running on the server itself, the client,

Remoting in Action

or any machine reachable via a network that will take a call from the .NET
Remoting Framework asking whether an object’s lifetime should be renewed or
not (more on this in Chapter 6).

When the sponsor decides that the lease will not be renewed or when the
framework is unable to contact any of the registered sponsors, the object is
marked as timed out and then garbage collected. When a client still has a refer-
ence to a timed-out object and calls a method on it, it will receive an exception.

To change the default lease times, you can override
InitializelifetimeService() in the MarshalByRefObject. In the following exam-
ple, you see how to change the last CAO sample to implement a different lifetime
of only ten milliseconds for this object. Normally LeaseManager only polls all
leases every ten seconds, so you have to change this polling interval as well.

namespace Server

{
class MyRemoteObject: MarshalByRefObject, IRemoteObject
{

public override object InitializelifetimeService()

{
Console.WriteLine("MyRemoteObject.InitializelifetimeService() called");
ILease lease = (ILease)base.InitializelifetimeService();
if (lease.CurrentState == LeaseState.Initial)

{
lease.InitiallLeaseTime = TimeSpan.FromMilliseconds(10);
lease.SponsorshipTimeout = TimeSpan.FromMilliseconds(10);
lease.RenewOnCallTime = TimeSpan.FromMilliseconds(10);
}
return lease;
}
// rest of implementation . ..
}
class MyRemoteFactory: MarshalByRefObject,IRemoteFactory
{
// rest of implementation
}

49

Administrator
This lease will have a time-to-live counter

Administrator
that is decremented in certain intervals.

Administrator

Administrator
to live

Administrator
added to this time to live upon every method call a client places on the

Administrator
When this time reaches zero,

Administrator
looks for any sponsors registered

Administrator
this lease.

Administrator
sponsor is an object running on the server itself, the client,

Administrator

Administrator

Administrator
or any machine reachable via a network

Administrator
When the sponsor decides that the lease will not be renewed or when the
framework is unable to contact any of the registered sponsors, the object is
marked as timed out and then garbage collected.

Administrator
In the following example,

Administrator
how to change the last CAO sample to implement a different lifetime

Administrator
of only ten milliseconds for this object.

Administrator
namespace Server
{
class MyRemoteObject: MarshalByRefObject, IRemoteObject
{
public override object InitializeLifetimeService()
{
Console.WriteLine(“MyRemoteObject.InitializeLifetimeService() called”);
ILease lease = (ILease)base.InitializeLifetimeService();
if (lease.CurrentState == LeaseState.Initial)
{
lease.InitialLeaseTime = TimeSpan.FromMilliseconds(10);
lease.SponsorshipTimeout = TimeSpan.FromMilliseconds(10);
lease.RenewOnCallTime = TimeSpan.FromMilliseconds(10);
}
return lease;
}
// rest of implementation . . .
}
class MyRemoteFactory: MarshalByRefObject,IRemoteFactory
{
// rest of implementation
}

Administrator
namespace Server

Administrator
MyRemoteObject:

Administrator
public override object InitializeLifetimeService()

Administrator
ILease lease = (ILease)base.InitializeLifetimeService();
if (lease.CurrentState == LeaseState.Initial)

Administrator
lease.InitialLeaseTime = TimeSpan.FromMilliseconds(10);
lease.SponsorshipTimeout = TimeSpan.FromMilliseconds(10);
lease.RenewOnCallTime = TimeSpan.FromMilliseconds(10);

Chaer3

class ServerStartup

{

static void Main(string[] args)

{

Console.Writeline ("ServerStartup.Main(): Server started");
LifetimeServices.LeaseManagerPollTime = TimeSpan.FromMilliseconds(10);

HttpChannel chnl = new HttpChannel(1234);
ChannelServices.RegisterChannel(chnl);

RemotingConfiguration.RegisterWellKnownServiceType(
typeof (MyRemoteFactory),
"factory.soap",
WellKnownObjectMode.Singleton);

// the server will keep running until keypress.
Console.ReadlLine();

50

On the client side, you can add a one-second delay between creation and the
first call on the remote object to see the effects of the changed lifetime. You also
need to provide some code to handle the RemotingException that will get thrown
because the object is no longer available at the server. The client is shown in
Listing 3-10.

Listing 3-10. A Client That Calls a Timed-Out CAO
using System;

using System.Runtime.Remoting;

using System.Runtime.Remoting.Channels.Http;

using System.Runtime.Remoting.Channels.Tcp;

using System.Runtime.Remoting.Channels;

using General;

namespace Client

{

class Client

{

static void Main(string[] args)

{

HttpChannel channel = new HttpChannel();

Administrator
class ServerStartup
{
static void Main(string[] args)
{
Console.WriteLine (“ServerStartup.Main(): Server started”);
LifetimeServices.LeaseManagerPollTime = TimeSpan.FromMilliseconds(10);
HttpChannel chnl = new HttpChannel(1234);
ChannelServices.RegisterChannel(chnl);
RemotingConfiguration.RegisterWellKnownServiceType(
typeof(MyRemoteFactory),
“factory.soap”,
WellKnownObjectMode.Singleton);
// the server will keep running until keypress.
Console.ReadLine();
}
}
}
Chapter 3

Administrator
class ServerStartup
{
static void Main(string[] args)
{
Console.WriteLine (“ServerStartup.Main(): Server started”);
LifetimeServices.LeaseManagerPollTime = TimeSpan.FromMilliseconds(10);
HttpChannel chnl = new HttpChannel(1234);
ChannelServices.RegisterChannel(chnl);
RemotingConfiguration.RegisterWellKnownServiceType(
typeof(MyRemoteFactory),
“factory.soap”,
WellKnownObjectMode.Singleton);
// the server will keep running until keypress.
Console.ReadLine();
}
}
}

Administrator
class ServerStartup

Administrator
Main(

Administrator
LifetimeServices.LeaseManagerPollTime = TimeSpan.FromMilliseconds(10);

Administrator
HttpChannel chnl = new HttpChannel(1234);
ChannelServices.RegisterChannel(chnl);
RemotingConfiguration.RegisterWellKnownServiceType(
typeof(MyRemoteFactory),
“factory.soap”,
WellKnownObjectMode.Singleton);

Administrator
On the client side, you can add a one-second delay between creation and the
first call on the remote object to see the effects of the changed lifetime.

Administrator
Listing 3-10. A Client That Calls a Timed-Out CAO
using System;
using System.Runtime.Remoting;
using System.Runtime.Remoting.Channels.Http;
using System.Runtime.Remoting.Channels.Tcp;
using System.Runtime.Remoting.Channels;
using General;
namespace Client
{
class Client
{
static void Main(string[] args)
{
HttpChannel channel = new HttpChannel();

Administrator
using General;

Administrator
Client

Administrator
class Client

Administrator
HttpChannel channel = new HttpChannel();

ChannelServices.RegisterChannel(channel);

Console.WritelLine("Client.Main(): Creating factory");

IRemoteFactory fact = (IRemoteFactory) Activator.GetObject(
typeof(IRemoteFactory),
"http://localhost:1234/factory.soap");

Console.WriteLine("Client.Main(): Acquiring object from factory");
IRemoteObject obj1 = fact.getNewInstance();

Console.WriteLine("Client.Main(): Sleeping one second");
System.Threading.Thread.Sleep(1000);

Console.WriteLine("Client.Main(): Setting value");
try

{
obji.setValue(42);

}

catch (Exception e)

{
Console.WriteLine("Client.Main(). EXCEPTION \n{0}",e.Message);

Console.ReadlLine();

Remotin,

¥ in Action

Running this sample, you see that the client is able to successfully create
a factory object and call its getNewInstance() method (Figure 3-13). When calling
setValue() on the returned CAO, the client will receive an exception stating the
object has timed out. The server runs normally (Figure 3-14).

51

Administrator
ChannelServices.RegisterChannel(channel);
Console.WriteLine(“Client.Main(): Creating factory”);
IRemoteFactory fact = (IRemoteFactory) Activator.GetObject(
typeof(IRemoteFactory),
“http://localhost:1234/factory.soap”);
Console.WriteLine(“Client.Main(): Acquiring object from factory”);
IRemoteObject obj1 = fact.getNewInstance();
Console.WriteLine(“Client.Main(): Sleeping one second”);
System.Threading.Thread.Sleep(1000);
Console.WriteLine(“Client.Main(): Setting value”);
try
{
obj1.setValue(42);
}
catch (Exception e)
{
Console.WriteLine(“Client.Main(). EXCEPTION \n{0}”,e.Message);
}
Console.ReadLine();
}
}
Remoting

Administrator
ChannelServices.RegisterChannel(channel);

Administrator
IRemoteFactory fact = (IRemoteFactory) Activator.GetObject(
typeof(IRemoteFactory),
“http://localhost:1234/factory.soap”);

Administrator
System.Threading.Thread.Sleep(1000);

Administrator
obj1.setValue(42);

Administrator
Console.WriteLine(“Client.Main(). EXCEPTION \n{0}”,e.Message);

Administrator
Running this sample, you see that the client is able to successfully create
a factory object and call its getNewInstance() method (Figure 3-13).

Chapter 3

52

Client .Main(>: Creating factory

Client .Main{(>: Acquiring obhject from factory
Client .Main<(>: Sleeping one second

Client -Main(>: Setting value

Client.Main(>. EXCEPTION

Obhject </ b62dcB3h_6345_48cl_adab_le4db87a581e~52696253_1.rem> haz been disconnec
ted or does not exist at the server.

Figure 3-13. The client receives an exception because the object has timed out.

Serverfitartup.Maind): Server started
MyManager.getNewlnstance()> called

MyRemoteObject .ctor(> called
MyRemoteObject.InitializelLifetimeService(> called

Figure 3-14. The server when overriding InitializelifetimeService()

Types of Invocation

The .NET Framework provides three possibilities to call methods on remote
objects (no matter if they are Singleton, SingleCall, or published objects). You can
execute their methods in a synchronous, asynchronous, or asynchronous one-
way fashion.

Synchronous calls are basically what I showed you in the preceding exam-
ples. The server’s remote method is called like a common method, and the client
blocks (waits) until the server has completed its processing. If an exception
occurs during execution of the remote invocation, the exception is thrown at the
line of code in which vou called the server

are discussed in more detail in Chapter 6.) The first step triggers the execution
but does not wait for the method’s response value. The program flow continues
on the client. When you are ready to collect the function’s response, you have to
call another function that checks if the server has already finished processing
your request; if not, it blocks until finalization. Any exception thrown during

the call of your method will be rethrown at the line of code where you collect the
response. Even if the server has been offline, vou won't be notified beforehand

111C 1dSUKINA O TUINncuon 1s 4 Htue duierent 1roin te preceding OIics. vvIitl
asynchronous one-way methods, you don’t have the option of receiving return
values or getting an exception if the server has been offline or otherwise unable
to fulfill your request. The .NET Remoting Framework will just try to call the
methods on the remote server and won't do anything else.

Administrator
Figure 3-13. The client receives an exception because the object has timed out.

Administrator
Figure 3-14. The server when overriding InitializeLifetimeService()

Administrator
Types of Invocation

Administrator
.NET Framework

Administrator
three possibilities to call methods on remote

Administrator
objects

Administrator
synchronous,

Administrator
asynchronous,

Administrator
asynchronous oneway
fashion.

Administrator
oneway
fashion.
Synchronous calls are basically what I showed you in the preceding examples.
The server’s remote method is called like a common method, and the client
blocks (waits) until the server has completed its processing. If an exception
occurs during execution of the remote invocation, the exception is thrown at the
line of code in which you called the server.

Administrator
Asynchronous calls are executed in a two-step process. (Asynchronous calls
are discussed in more detail in Chapter 6.) The first step triggers the execution
but does not wait for the method’s response value. The program flow continues
on the client. When you are ready to collect the function’s response, you have to
call another function that checks if the server has already finished processing
your request; if not, it blocks until finalization. Any exception thrown during
the call of your method will be rethrown at the line of code where you collect the
response. Even if the server has been offline, you won’t be notified beforehand.

Administrator
The last kind of function is a little different from the preceding ones. With
asynchronous one-way methods, you don’t have the option of receiving return
values or getting an exception if the server has been offline or otherwise unable
to fulfill your request. The .NET Remoting Framework will just try to call the
methods on the remote server and won’t do anything else.

Administrator
Synchronous calls are basically what I showed you in the preceding examples.

Administrator
server’s remote method is called like a common method,

Administrator
client

Administrator
blocks

Administrator
until the server has completed its processing.

Administrator
Asynchronous calls are executed in a two-step process.

Administrator
first step triggers the execution

Administrator
but does not wait for the method’s response value.

Administrator
When you are ready to collect the function’s response, you have to
call another function that checks if the server has already finished processing
your request; if not, it blocks until finalization.

Administrator
The last kind of function

Administrator
a little different from the preceding ones.

Administrator
asynchronous one-way methods, you don’t have the option of receiving return
values or getting an exception if the server has been offline or otherwise unable
to fulfill your request.

Administrator

Administrator

Remoting in Action

@chronous C alD

As I've mentioned, synchronous calls are the usual way of calling a function in
the .NET Framework. The server will be contacted directly and, except when
using multiple client-side threads, the client code will block until the server has
finished executing its method. If the server is unavailable or an exception occurs
while carrying out your request, the exception will be rethrown at the line of code
where you called the remote method.

Using Synchronous Calls

Irf¥Retallowing series of examples for the different types of invocation-set1 use

a common server and a shared assembly called General dll (you'll see some slight
modifications in the last part). This server just provides you with a Singleton
object that stores an int as its state and has an additional method that returns

a String. You'll use this later to demonstrate the collection of return values when
using asynchronous calls.

Defining the General.dll

In Listing 3-11, you see the shared General.dll in which the necessary interface
is defined.

Listing 3-11. The Shared Assembly’s Source Code
using System;

using System.Runtime.Remoting.Messaging;

namespace General

{
public abstract class BaseRemoteObject: MarshalByRefObject
{
public abstract void setValue(int newval);
public abstract int getValue();
public abstract String getName();
}
}
Creating the Server

The Server, showninl I'Qﬁhg o | ')7 imF]m Haa-defned meibods with the

add@aking the setValue() and getName() functions long-running code.>
In both meTNoUS;Tfresecond-delaisintzoduced-soye ects of

long-lasting execution in the different invocation contexts.

53

Administrator
Synchronous Calls

Administrator

Administrator
In the following series of examples for the different types of invocation, you
common server and a shared assembly called General.dll (you’ll see some

Administrator
Defining the General.dll
In Listing 3-11, you see the shared General.dll in which the necessary interface
is defined.
Listing 3-11. The Shared Assembly’s Source Code
using System;
using System.Runtime.Remoting.Messaging;
namespace General
{
public abstract class BaseRemoteObject: MarshalByRefObject
{
public abstract void setValue(int newval);
public abstract int getValue();
public abstract String getName();
}
}

Administrator
Creating the Server
The server, shown in Listing 3-12, implements the defined methods with the
addition of making the setValue() and getName() functions long-running code.
In both methods, a five-second delay is introduced so you can see the effects of
long-lasting execution in the different invocation contexts.

Administrator
server, shown in Listing 3-12, implements the defined methods with the
addition of making the setValue() and getName() functions long-running code.
both methods, a five-second delay is introduced so you can see the effects of

Administrator
setValue()

Administrator
getName()

Administrator
long-

Administrator
running

Administrator
code.

Administrator
namespace General

Administrator
setValue(

Administrator
getValue();

Administrator
getName();

Administrator
examples for the different types of invocation, you use

Administrator
General.

Administrator
dll

Administrator
server will be contacted directly and, except when

Administrator
using multiple client-side threads,

Administrator
client code will block until the server

Administrator
finished

Administrator

Administrator

Chapter 3

Listing 3-12. A Server with Some Long-Running Methods
using System;

using System.Runtime.Remoting;

using General;

using System.Runtime.Remoting.Channels.Http;

using System.Runtime.Remoting.Channels;

using System.Runtime.Remoting.Messaging;

using System.Collections;

using System.Threading;

namespace Server

{
class MyRemoteObject: BaseRemoteObject

{

public MyRemoteObject()
{

Console.WritelLine("MyRemoteObject.Constructor: New Object created");

public override void setValue(int newval)

{

(onsole.WriteLine("MyRemoteObject.setValue(): old {o} new:(D
myvalue,newval);

// simulate a long running action

Console.WritelLine(" .setValue() -> waiting 5 sec before setting" +
"value");
Thread.Sleep(5000);

myvalue = newval;
Console.WritelLine(" .setValue() -> value is now set");

public override int getValue()

{
Console.WritelLine("MyRemoteObject.getValue(): current {0}",myvalue);

@urn myvaluD
}

54

Administrator
Listing 3-12. A Server with Some Long-Running Methods
using System;
using System.Runtime.Remoting;
using General;
using System.Runtime.Remoting.Channels.Http;
using System.Runtime.Remoting.Channels;
using System.Runtime.Remoting.Messaging;
using System.Collections;
using System.Threading;
namespace Server
{
class MyRemoteObject: BaseRemoteObject
{
int myvalue;
public MyRemoteObject()
{
Console.WriteLine(“MyRemoteObject.Constructor: New Object created”);
}
public override void setValue(int newval)
{
Console.WriteLine(“MyRemoteObject.setValue(): old {0} new {1}”,
myvalue,newval);
// simulate a long running action
Console.WriteLine(“ .setValue() -> waiting 5 sec before setting” +
“value”);
Thread.Sleep(5000);
myvalue = newval;
Console.WriteLine(“ .setValue() -> value is now set”);
}
public override int getValue()
{
Console.WriteLine(“MyRemoteObject.getValue(): current {0}”,myvalue);
return myvalue;
}

Administrator
using General;

Administrator
namespace Server

Administrator
MyRemoteObject:

Administrator
MyRemoteObject()

Administrator
setValue(

Administrator
Thread.Sleep(5000);

Administrator
getValue()

Administrator
int myvalue;

Administrator
return myvalue;
}

Administrator
Console.WriteLine(“MyRemoteObject.setValue(): old {0} new {1}”,
myvalue,newval);

Remoting in Action

public override String getName()

{

Console.WritelLine("MyRemoteObject.getName(): called");

// simulate a long running action

Console.WriteLine(" .getName() -> waiting 5 sec before continuing");

Thread.Sleep(5000);

Console.WriteLine(" .getName() -> returning name");
return "John Doe";

{

{

class ServerStartup

static void Main(string[] args)

Console.WriteLine ("ServerStartup.Main(): Server started");

HttpChannel chnl = new HttpChannel(1234);
ChannelServices.RegisterChannel(chnl);

RemotingConfiguration.RegisterWellKnownServiceType(
typeof(MyRemoteObject),
"MyRemoteObject.soap"”,
WellknownObjectMode.Singleton);

// the server will keep running until keypress.
Console.ReadLine();

Creating the Client

The first client, which is shown in Listing 3-13, calls the server synchronously, as
in all preceding examples. It calls all three methods and gives you statistics on

how long the total execution took.

55

Administrator
getName()

Administrator
Thread.Sleep(5000);

Administrator
return “John Doe”;

Administrator
class ServerStartup

Administrator
public override String getName()
{
Console.WriteLine(“MyRemoteObject.getName(): called”);
// simulate a long running action
Console.WriteLine(“ .getName() -> waiting 5 sec before continuing”);
Thread.Sleep(5000);
Console.WriteLine(“ .getName() -> returning name”);
return “John Doe”;
}
}
class ServerStartup
{
static void Main(string[] args)
{
Console.WriteLine (“ServerStartup.Main(): Server started”);
HttpChannel chnl = new HttpChannel(1234);
ChannelServices.RegisterChannel(chnl);
RemotingConfiguration.RegisterWellKnownServiceType(
typeof(MyRemoteObject),
“MyRemoteObject.soap”,
WellKnownObjectMode.Singleton);
// the server will keep running until keypress.
Console.ReadLine();
}
}
}
Creating the Client

Administrator
class ServerStartup
{
static void Main(string[] args)
{
Console.WriteLine (“ServerStartup.Main(): Server started”);
HttpChannel chnl = new HttpChannel(1234);
ChannelServices.RegisterChannel(chnl);
RemotingConfiguration.RegisterWellKnownServiceType(
typeof(MyRemoteObject),
“MyRemoteObject.soap”,
WellKnownObjectMode.Singleton);
// the server will keep running until keypress.
Console.ReadLine();
}
}

Administrator
Main(

Administrator
HttpChannel chnl = new HttpChannel(1234);

Administrator
ChannelServices.RegisterChannel(chnl);

Administrator
RemotingConfiguration.RegisterWellKnownServiceType(
typeof(MyRemoteObject),
“MyRemoteObject.soap”,
WellKnownObjectMode.Singleton);

Administrator

Chapter 3

56

Listing 3-13. The First Client Calls the Methods Synchronously
using System;

using System.Runtime.Remoting;

using General;

using System.Runtime.Remoting.Channels.Http;

using System.Runtime.Remoting.Channels.Tcp;

using System.Runtime.Remoting.Channels;

using System.Runtime.Remoting.Proxies;

using System.Threading;

namespace Client

{

class Client

{

static void Main(string[] args)
{

DateTime start = System.DateTime.Now;

HttpChannel channel = new HttpChannel();

ChannelServices.RegisterChannel(channel);

BaseRemoteObject obj = (BaseRemoteObject) Activator.GetObject(
typeof(BaseRemoteObject),
"http://localhost:1234/MyRemoteObject.soap");

Console.Writeline("Client.Main(): Reference to rem.obj. acquired");

Console.WritelLine("Client.Main(): Will set value to 42");
obj.setValue(42);

Console.Writeline("Client.Main(): Will now read value");
int tmp = obj.getValue();
Console.WritelLine("Client.Main(): New server side value {0}", tmp);

Console.Writeline("Client.Main(): Will call getName()");
String name = obj.getName();
Console.Writeline("Client.Main(): received name {0}",name);

DateTime end = System.DateTime.Now;

TimeSpan duration = end.Subtract(start);

Console.WritelLine("Client.Main(): Execution took {0} seconds.",
duration.Seconds);

Administrator
Listing 3-13. The First Client Calls the Methods Synchronously
using System;
using System.Runtime.Remoting;
using General;
using System.Runtime.Remoting.Channels.Http;
using System.Runtime.Remoting.Channels.Tcp;
using System.Runtime.Remoting.Channels;
using System.Runtime.Remoting.Proxies;
using System.Threading;
namespace Client
{
class Client
{
static void Main(string[] args)
{
DateTime start = System.DateTime.Now;
HttpChannel channel = new HttpChannel();
ChannelServices.RegisterChannel(channel);
BaseRemoteObject obj = (BaseRemoteObject) Activator.GetObject(
typeof(BaseRemoteObject),
“http://localhost:1234/MyRemoteObject.soap”);
Console.WriteLine(“Client.Main(): Reference to rem.obj. acquired”);
Console.WriteLine(“Client.Main(): Will set value to 42”);
obj.setValue(42);
Console.WriteLine(“Client.Main(): Will now read value”);
int tmp = obj.getValue();
Console.WriteLine(“Client.Main(): New server side value {0}”, tmp);
Console.WriteLine(“Client.Main(): Will call getName()”);
String name = obj.getName();
Console.WriteLine(“Client.Main(): received name {0}”,name);
DateTime end = System.DateTime.Now;
TimeSpan duration = end.Subtract(start);
Console.WriteLine(“Client.Main(): Execution took {0} seconds.”,
duration.Seconds);

Administrator
using General;

Administrator
namespace Client

Administrator
Client

Administrator
Main(

Administrator
HttpChannel channel = new HttpChannel();
ChannelServices.RegisterChannel(channel);
BaseRemoteObject obj = (BaseRemoteObject) Activator.GetObject(
typeof(BaseRemoteObject),
“http://localhost:1234/MyRemoteObject.soap”);

Administrator
obj.setValue(42);

Administrator
int tmp = obj.getValue();

Administrator
String name = obj.getName();

Console.Readline();

Remoting in Actig

=

As the calls to the long-running methods getName () and setValue() are
expected to take roughly five seconds each, and you have to add a little overhead
for .NET Remoting (especially for the first call on a remote object), this example
will take more than ten seconds to run.

You can see that this assumption is right by looking at the client’s output in
Figure 3-15. The total client execution takes 12 seconds. When looking at the
server’s output in Figure 3-16, note that all methods are called synchronously.
Every method is finished before the next one is called by the client.

 Remoting.MET", Cho3' SynchronousCalls', Clie

Client .Main<)>: Heference to rem.ohj. acquired
Client .Main<>: Will set value to 42

Client .Main{>: Will now read value

Client .Main< Mew server side value 42

received name John Doe
Execution took 12 seconds.

Client .Main<
Client .Main<

>
Client.ﬂain(g Will call getMame{>
>

Figure 3-15. Client’s output when using synchronous calls

% Remoting.NET" Ch03" SynchronousCalls'.Clie

Client .Main<{>: Reference to rem.ohj. acgquired
Client .Main<>: Will set value to 42

Client .Main<>: Will now read value

Client .Main<>: Hew server side value 42
Client .Main< Will call getMame(>

]
Client.ﬂain(g received name John Doe

Client .Main< Execution took 12 seconds.

Figure 3-16. Server’s output when called synchronously

57

Administrator
Console.ReadLine();
}
}
}
Remoting in Action

Administrator
Figure 3-15. Client’s output when using synchronous calls

Administrator
Figure 3-16. Server’s output when called synchronously

Administrator
synchronous

Administrator
Client’s

Administrator
Server’s

Administrator
synchronously

Chapter 3

58

Gsvnchronous Calls >

In the synchronous calls example, you saw that waiting for every method to com-
plete incurs a performance penalty if the calls themselves are independent; the
second call doesn’t need the output from the first. You could now use a separate
thread to call the second method, but even though threading is quite simple in
.NET, it would probably render the application more complex if you use a distinct
thread for any longer lasting remote function call. The .NET Framework provides
a feature, called asynchronous delegates, that allows methods to be called in an
asynchronous fashion with only three lines of additional code.

Delegate Basics

A delegateis, in its regular sense, just a kind of an object-oriented function _J
pointer.)%u will initialize it and pass a function to be called when the delegate is
invoked. In .NET Framework, a delegate is a subclass of

System.MulticastDelegate, but C# provides an easier way to define a delegate

instead of declaring a new Class.

Declaring a Delegate

The declaration of a delegate looks quite similar to the declaration of a method:

delegate <ReturnType> <name> ([parameters]);

As the delegate will call a method at some point in the future, you have to
provide it with a declaration that matches the method’s signature. When you
want a delegate to call the following method:

public String doSomething(int myValue)

you have to define it as follows:

delegate String doSomethingDelegate (int myValue);

NOTE The delegate’s parameter and return types have to match those of
the method.

Administrator
Asynchronous Calls

Administrator

Administrator

Administrator
delegate

Administrator
object-oriented function

Administrator
pointer.

Administrator

Administrator

Administrator

Administrator
delegate <ReturnType> <name> ([parameters]);

Administrator
delegate will call a method

Administrator
some point in the future,

Administrator
provide it with a declaration that matches the method’s signature.

Administrator

Administrator
public String doSomething(int myValue)

Administrator
delegate String doSomethingDelegate (int myValue);

Administrator
public String doSomething(int myValue)

Administrator
delegate String doSomethingDelegate (int myValue);

Administrator
parameter

Administrator
have to match those

Administrator
method.

Remoting in Action

Remember that the delegate is in reality just another class, so you cannot
define it within a method’s body, only directly within a namespace or
another class!

@chronously Invoking a DelegaD

When you want to use a delegate, you first have to create an instance of it, pass-
ing the method to be called as a constructor parameter:

doSomethingDelegate del = new doSomethingDelegate(doSomething);

NOTE When passing the method to the constructor, be sure not to include
an opening or closing parenthesis — (or) —as in doSomething(). The pre-
vious example uses a static method doSomething in the same class. When
using static methods of other classes, you have to pass
SomeClass.someMethod, and for instance methods, you pass
SomeObject.doSomething.

The asynchronous invocation of a delegate is a two-step process. In the first
step, you have to trigger the execution using BeginInvoke(), as follows:

IAsyncResult ar = del.BeginInvoke(42,null,null);

NOTE BeginInvoke() behaves a little strangely in the IDE. You won'’t see it
using IntelliSense, as it is automatically generated during compilation.
The parameters are the same as the method parameters, according to the
delegate definition, followed by two other objects; you won't be using these
two objects in the following examples, instead passing null to
BeginInvoke().

BeginInvoke() then returns an IAsyncResult object that will be used later to

retrieve the method’s return values. When ready to do so, vou call EndInvoke() on

the delegate passing the IAsyncResult as a parameter. The EndInvoke() method
will block until the server has completed executing the underlying method.

String res = del.EndInvoke(ar);

59

Administrator
delegate is in reality just another class,

Administrator
Asynchronously Invoking a Delegate

Administrator
When you want to use a delegate,

Administrator
first have to create an instance of it,

Administrator
passing
the method to be called as a constructor parameter:

Administrator
doSomethingDelegate del = new doSomethingDelegate(doSomething);

Administrator
IAsyncResult ar = del.BeginInvoke(42,null,null);

Administrator
asynchronous invocation of a delegate

Administrator
two-step process.

Administrator

Administrator

Administrator
IAsyncResult ar = del.BeginInvoke(42,null,null);

Administrator
BeginInvoke()

Administrator
is automatically generated during compilation.

Administrator
BeginInvoke()

Administrator
returns an IAsyncResult object that will be used later to

Administrator
retrieve the method’s return values.

Administrator

Administrator

Administrator
EndInvoke()

Administrator
will block until the server has completed executing

Chapter 3

60

NOTE EndInvoke() will not be visible in the IDE either. The method takes
an IAsyncResult as a parameter, and its return type will be defined in the
delegate’s declaration.

< Creating an Example Delegate >

In Listing 3-14, a delegate is used to asynchronously call a local function and wait
for its result. The method returns a String built from the passed int parameter.

Listing 3-14. Using a Delegate in a Local Application
using System;

namespace SampleDelegate

{

class SomethingClass

{
delegate String doSomethingDelegate(int myValue);

public static String doSomething(int myValue)

{
return "HEY:" + myValue.ToString();

static void Main(string[] args)
{
doSomethingDelegate del = new doSomethingDelegate(doSomething);
IAsyncResult ar = del.BeginInvoke(42,null,null);
// ... do something different here
String res = del.EndInvoke(ar);

Console.WritelLine("Got result: '{o0}'",res);

//wait for return to close
Console.ReadlLine();

As expected, the application outputs “HEY:42” as you can see in Figure 3-17.

Administrator
EndInvoke()

Administrator
IDE

Administrator
either.

Administrator
Creating an Example Delegate

Administrator
delegate is used to asynchronously call a local function

Administrator
wait

Administrator
for its result.

Administrator
Listing 3-14. Using a Delegate in a Local Application
using System;
namespace SampleDelegate
{
class SomethingClass
{
delegate String doSomethingDelegate(int myValue);
public static String doSomething(int myValue)
{
return “HEY:” + myValue.ToString();
}
static void Main(string[] args)
{
doSomethingDelegate del = new doSomethingDelegate(doSomething);
IAsyncResult ar = del.BeginInvoke(42,null,null);
// . . . do something different here
String res = del.EndInvoke(ar);
Console.WriteLine(“Got result: ‘{0}’”,res);
//wait for return to close
Console.ReadLine();
}
}
}

Administrator
namespace SampleDelegate

Administrator
SomethingClass

Administrator
delegate String doSomethingDelegate(int myValue);

Administrator
doSomething(

Administrator
Main(

Administrator
doSomethingDelegate del = new doSomethingDelegate(doSomething);
IAsyncResult ar = del.BeginInvoke(42,null,null);

Administrator
String res = del.EndInvoke(ar);

Remoting in Action

Remoting.NET",ChD3" Delegate!
Got result: *‘HEY:42°*

Figure 3-17. The sample delegate

@lementing the New Cl@

In the new remoting client, shown in Listing 3-15, you see how to change the calls
to getName() and setValue() to use delegates as well. Your client then invokes
both delegates and subsequently waits for their completion before synchro-
nously calling getValue() on the server. In this instance, you use the same server
application as in the preceding example.

Listing 3-15. The New Client Now Using Asynchronous Delegates

using
using
using
using
using
using
using
using

System;

System.Runtime.Remoting;

General;
System.Runtime.Remoting.Channels.Http;
System.Runtime.Remoting.Channels.Tcp;
System.Runtime.Remoting.Channels;
System.Runtime.Remoting.Proxies;
System.Threading;

namespace Client

{

class Client

{

delegate void SetValueDelegate(int value);
delegate String GetNameDelegate();

static void Main(string[] args)
{

DateTime start = System.DateTime.Now;

61

Administrator
Figure 3-17. The sample delegate

Administrator
Implementing the New Client

Administrator
new remoting client,

Administrator
you see how to change the calls

Administrator
to getName() and setValue()

Administrator
use delegates as well.

Administrator
Listing 3-15. The New Client Now Using Asynchronous Delegates
using System;
using System.Runtime.Remoting;
using General;
using System.Runtime.Remoting.Channels.Http;
using System.Runtime.Remoting.Channels.Tcp;
using System.Runtime.Remoting.Channels;
using System.Runtime.Remoting.Proxies;
using System.Threading;
namespace Client
{
class Client
{
delegate void SetValueDelegate(int value);
delegate String GetNameDelegate();
static void Main(string[] args)
{
DateTime start = System.DateTime.Now;

Administrator
using General;

Administrator
Client

Administrator
Client

Administrator
delegate void SetValueDelegate(int value);
delegate String GetNameDelegate();

Administrator
Main(

Chapter 3

HttpChannel channel = new HttpChannel();

ChannelServices.RegisterChannel(channel);

BaseRemoteObject obj = (BaseRemoteObject) Activator.GetObject(
typeof(BaseRemoteObject),
"http://localhost:1234/MyRemoteObject.soap");

Console.Writeline("Client.Main(): Reference to rem.obj. acquired")

Console.WriteLine("Client.Main(): Will call setValue(42)");
SetValueDelegate svDelegate = new SetValueDelegate(obj.setValue);
IAsyncResult svAsyncres = svDelegate.BeginInvoke(42,null,null);
Console.WritelLine("Client.Main(): Invocation done");

Console.Writeline("Client.Main(): Will call getName()");
GetNameDelegate gnDelegate = new GetNameDelegate(obj.getName);
IAsyncResult gnAsyncres = gnDelegate.BeginInvoke(null,null);
Console.WritelLine("Client.Main(): Invocation done");

Console.WritelLine("Client.Main(): EndInvoke for setValue()");
svDelegate.EndInvoke(svAsyncres);
Console.WritelLine("Client.Main(): EndInvoke for getName()");
String name = gnDelegate.EndInvoke(gnAsyncres);

Console.WritelLine("Client.Main(): received name {0}",name);

Console.Writeline("Client.Main(): Will now read value");
int tmp = obj.getValue();
Console.WritelLine("Client.Main(): New server side value {0}", tmp)

DateTime end = System.DateTime.Now;

TimeSpan duration = end.Subtract(start);

Console.Writeline("Client.Main(): Execution took {0} seconds.”,
duration.Seconds);

Console.ReadLine();

When looking in the client’s output in Figure 3-18, you can see that both
long-running methods have been called at nearly the same time. This results in
improved runtime performance, taking the execution time down from 12 sec-
onds to 8 at the expense of making the application slightly more complex.

62

Administrator
SetValueDelegate svDelegate = new SetValueDelegate(obj.setValue);
IAsyncResult svAsyncres = svDelegate.BeginInvoke(42,null,null);

Administrator
GetNameDelegate gnDelegate = new GetNameDelegate(obj.getName);
IAsyncResult gnAsyncres = gnDelegate.BeginInvoke(null,null);

Administrator
svDelegate.EndInvoke(svAsyncres);

Administrator
String name = gnDelegate.EndInvoke(gnAsyncres);

Administrator
HttpChannel channel = new HttpChannel();
ChannelServices.RegisterChannel(channel);
BaseRemoteObject obj = (BaseRemoteObject) Activator.GetObject(
typeof(BaseRemoteObject),
“http://localhost:1234/MyRemoteObject.soap”);
Console.WriteLine(“Client.Main(): Reference to rem.obj. acquired”);
Console.WriteLine(“Client.Main(): Will call setValue(42)”);
SetValueDelegate svDelegate = new SetValueDelegate(obj.setValue);
IAsyncResult svAsyncres = svDelegate.BeginInvoke(42,null,null);
Console.WriteLine(“Client.Main(): Invocation done”);
Console.WriteLine(“Client.Main(): Will call getName()”);
GetNameDelegate gnDelegate = new GetNameDelegate(obj.getName);
IAsyncResult gnAsyncres = gnDelegate.BeginInvoke(null,null);
Console.WriteLine(“Client.Main(): Invocation done”);
Console.WriteLine(“Client.Main(): EndInvoke for setValue()”);
svDelegate.EndInvoke(svAsyncres);
Console.WriteLine(“Client.Main(): EndInvoke for getName()”);
String name = gnDelegate.EndInvoke(gnAsyncres);
Console.WriteLine(“Client.Main(): received name {0}”,name);
Console.WriteLine(“Client.Main(): Will now read value”);
int tmp = obj.getValue();
Console.WriteLine(“Client.Main(): New server side value {0}”, tmp);
DateTime end = System.DateTime.Now;
TimeSpan duration = end.Subtract(start);
Console.WriteLine(“Client.Main(): Execution took {0} seconds.”,
duration.Seconds);
Console.ReadLine();
}
}
}

Administrator
both
long-running methods have been called at nearly the same time.

Remoting in Action

Remoting.NET' Ch034 AsynchronousCal

Client.Main<»: Reference to rem.ohj. acquired
Client.Main<»: Will call setUalue<42>
Client.Main<»: Invocation done

Client .Maint>»: Will call getMame{>
Client.Main<»: Invocation done
Client.Main<>»: EndInvoke for setlUaluel?
Client.Main<>»: EndInvoke for getHame<>
Client.Main<»: received name John Doe
Client.Main<>»: Will now read value
Client.Main<»: Hew server side value 42
Client .Main<»: Execution took 8 seconds.

Figure 3-18. Client output when using asynchronous calls

The server output in Figure 3-19 shows that both methods have been entered
on the server at the same time without blocking the client.

\Remoting.NET', ChD3 AsynchronousCall

ServerStartup.Main{>: Server started
MyRemoteObject.Constructor: Mew Object created
MyRemoteOhject.setUalues?: old A new 42

.setlaluet? —»* waiting 5 sec hefore setting value
MyRemoteOhject . .getHame<»: called

.getHame{} —»* waiting 5 sec bhefore continuing

-setlalue? —>* wvalue iz now set

.getName<} —»> returning name
MyRemoteObhject .getUalues?: current 42

Figure 3-19. Server’s output when called asynchronously

Asynchronous One-Way Calls

One-way calls are a little different from asynchronous calls in the respect that the
.NET Framework does not guarantee their execution. In addition, the methods
used in this kind of call cannot have return values or out parameters. You also
use delegates to call one-way methods, but the EndInvoke() function will exit
immediately without checking if the server has finished

63

Administrator
Figure 3-18. Client output when using asynchronous calls

Administrator
Figure 3-19. Server’s output when called asynchronously

Administrator
Client

Administrator
asynchronous

Administrator
Server’s

Administrator
asynchronously

Chapter 3

64

processing yet. No exceptions are thrown, even if the remote server is down or
the method call is malformed. Reasons for using these kind of methods (which
aren’t guaranteed to be executed at all) can be found in uncritical logging or
tracing facilities, where the nonexistence of the server should not slow down
the application.

@nstrating an Asynchronous One-Way CalD

You define one-way methods using the [OneWay] attribute. This happens in the
defining metadata (in the General dll in these examples) and doesn’t need
a change in the server or the client.

Defining the General.dll

The attribute [OneWay()] has to be specified in the interface definition of each
method that will be called this way. As shown in Listing 3-16, you change only the
setValue() method to become a one-way method; the others are still defined

as earlier.

Listing 3-16. The Shared Interfaces DLL Defines the One-Way Method
using System;
using System.Runtime.Remoting.Messaging;

namespace General

{
public abstract class BaseRemoteObject: MarshalByRefObject
{
[OneWay()]
public abstract void setValue(int newval);
public abstract int getValue();
public abstract String getName();
}
}

Implementing the Client

On the server side, no change is needed, so you can directly look at the client. In
theory, no modification is needed for the client as well, but extend it a little here
to catch the eventual exception during execution, as shown in Listing 3-17.

Administrator
Demonstrating an Asynchronous One-Way Call

Administrator
You define one-way methods using the [OneWay] attribute.

Administrator
General.

Administrator
dll

Administrator
Listing 3-16. The Shared Interfaces DLL Defines the One-Way Method
using System;
using System.Runtime.Remoting.Messaging;
namespace General
{
public abstract class BaseRemoteObject: MarshalByRefObject
{
[OneWay()]
public abstract void setValue(int newval);
public abstract int getValue();
public abstract String getName();
}
}

Administrator

Administrator

Administrator
[OneWay()]

Administrator
namespace General

Administrator
attribute [OneWay()] has to be specified in the interface definition

Administrator
each

Administrator
method that will be called this way.

Administrator
public abstract void setValue(int newval);

Administrator
On the server side, no change is needed,

Remoting in Action

Listing 3-17. Try/Catch Blocks Are Added to the Client

using
using
using
using
using
using
using
using

System;

System.Runtime.Remoting;

General;
System.Runtime.Remoting.Channels.Http;
System.Runtime.Remoting.Channels.Tcp;
System.Runtime.Remoting.Channels;
System.Runtime.Remoting.Proxies;
System.Threading;

namespace Client

{

class Client

{

delegate void SetValueDelegate(int value);

static void Main(string[] args)
{

HttpChannel channel = new HttpChannel();

ChannelServices.RegisterChannel(channel);

BaseRemoteObject obj = (BaseRemoteObject) Activator.GetObject(
typeof(BaseRemoteObject),
"http://localhost:1234/MyRemoteObject.soap");

Console.WriteLine("Client.Main(): Reference to rem.obj. acquired");

Console.WriteLine("Client.Main(): Will call setValue(42)");
SetValueDelegate svDelegate = new SetValueDelegate(obj.setValue);
IAsyncResult svAsyncres = svDelegate.BeginInvoke(42,null,null);
Console.WritelLine("Client.Main(): Invocation done");

Console.WriteLine("Client.Main(): EndInvoke for setValue()");
try
{
svDelegate.EndInvoke(svAsyncres);
Console.Writeline("Client.Main(): EndInvoke returned successfully");
}
catch (Exception e)
{
Console.Writeline("Client.Main(): EXCEPTION during EndInvoke");
}
// wait for keypress
Console.ReadLine();

65

Administrator
Listing 3-17. Try/Catch Blocks Are Added to the Client
using System;
using System.Runtime.Remoting;
using General;
using System.Runtime.Remoting.Channels.Http;
using System.Runtime.Remoting.Channels.Tcp;
using System.Runtime.Remoting.Channels;
using System.Runtime.Remoting.Proxies;
using System.Threading;
namespace Client
{
class Client
{
delegate void SetValueDelegate(int value);
static void Main(string[] args)
{
HttpChannel channel = new HttpChannel();
ChannelServices.RegisterChannel(channel);
BaseRemoteObject obj = (BaseRemoteObject) Activator.GetObject(
typeof(BaseRemoteObject),
“http://localhost:1234/MyRemoteObject.soap”);
Console.WriteLine(“Client.Main(): Reference to rem.obj. acquired”);
Console.WriteLine(“Client.Main(): Will call setValue(42)”);
SetValueDelegate svDelegate = new SetValueDelegate(obj.setValue);
IAsyncResult svAsyncres = svDelegate.BeginInvoke(42,null,null);
Console.WriteLine(“Client.Main(): Invocation done”);
Console.WriteLine(“Client.Main(): EndInvoke for setValue()”);
try
{
svDelegate.EndInvoke(svAsyncres);
Console.WriteLine(“Client.Main(): EndInvoke returned successfully”);
}
catch (Exception e)
{
Console.WriteLine(“Client.Main(): EXCEPTION during EndInvoke”);
}
// wait for keypress
Console.ReadLine();

Administrator
using General;

Administrator
namespace Client

Administrator
Client

Administrator
delegate void SetValueDelegate(int value);

Administrator
Main(

Administrator
HttpChannel channel = new HttpChannel();
ChannelServices.RegisterChannel(channel);
BaseRemoteObject obj = (BaseRemoteObject) Activator.GetObject(
typeof(BaseRemoteObject),
“http://localhost:1234/MyRemoteObject.soap”);

Administrator
SetValueDelegate svDelegate = new SetValueDelegate(obj.setValue);
IAsyncResult svAsyncres = svDelegate.BeginInvoke(42,null,null);

Administrator
svDelegate.EndInvoke(svAsyncres);

Administrator
Exception

Chapter 3

When this client is started, you will see the output in Figure 3-20 no matter
whether the server is running or not.

Remoting.NET",ChD3" 0neW ayCalls' Clig
Client .Main<>: Reference to rem.ohj. acguired
Client _Main<2>: Will call setUaluec42>

Client.Main<>: Invocation done
Client.Main<>: EndInvoke for setlUalued>

Client .Main<>: EndInvoke returned successfully

Figure 3-20. Client output when using one-way methods

As shown in Listing 3-18, you can now change the method in General.dll
back to a standard method (non-one-way) by commenting out the
[OneWay()] attribute.

Listing 3-18. Removing the [OneWay()] Attribute
using System;
using System.Runtime.Remoting.Messaging;

namespace General

{
public abstract class BaseRemoteObject: MarshalByRefObject
{
// no more one-way attribute [OneWay()]
public abstract void setValue(int newval);
public abstract int getValue();
public abstract String getName();

Recompilation and a restart of the client (still without a running server)
yields the result in Figure 3-21: an exception is thrown and a corresponding error
message is output.

66

Administrator
Figure 3-20. Client output when using one-way methods

Administrator
Client

Administrator
one-way methods

Administrator
Listing 3-18. Removing the [OneWay()] Attribute
using System;
using System.Runtime.Remoting.Messaging;
namespace General
{
public abstract class BaseRemoteObject: MarshalByRefObject
{
// no more one-way attribute [OneWay()]
public abstract void setValue(int newval);
public abstract int getValue();
public abstract String getName();
}
}

Administrator
namespace General

Administrator
// no more one-way attribute [OneWay()]

Remoting in Action

\Remoting.NET'. Ch03% OneWayCallsh Clie
Client.Main<>: Reference to rem.ohj. acquired
Client _Main<>»: Will call setUaluecd2>

Client.Main<>: Invocation done
Client.Main<>»: EndInvoke for setUaluel>

Client.Hain{}; EHCEPFTION during EndInvoke

Figure 3-21. Client output when removing the [OneWay()] attribute

When you now start the server (and restart the client), you get the output
shown in Figure 3-22, no matter if you used the [OneWay()] attribute or not. The
interesting thing is that when using [OneWay()], the call to EndInvoke() finishes
before the server completes the method. This is because in reality the client just
ignores the server’s response when using one-way method calls.

CAUTION Always remember that the clientignores the server’s output and
doesn’t even check if the server is running when using one-way methods!

C:"RemotingMETS ChO34% OneWayCalls'\Sery

Serveritartup.Main(>: Server started
MHyRemoteOhject.Constructor: HNew Object created
HuyRemoteOhject.setUalueC?: old @ new 42

-setlUalue(> —* waiting 5 sec before szetting value

-setlaluel> —* value iz now set

Figure 3-22. Output on the server—-independent of [OneWay()] attribute

67

Administrator
Figure 3-21. Client output when removing the [OneWay()] attribute

Administrator
Client

Administrator
when removing the [OneWay()] attribute

Administrator
The
interesting thing is that when using [OneWay()], the call to EndInvoke() finishes
before the server completes the method.

Administrator
Figure 3-22. Output on the server—independent of [OneWay()] attribute

Administrator
Output

Administrator
server

Administrator
independent of [OneWay()] attribute

Chapter 3

ltiserver Configuration

When using multiple servers in an application in which remote objects on one
server will be passed as parameters to methods of a second server’s object, there
are a few things vou need to consider.

Before talking about cross-server execution, I show you some details of
remoting with MarshalByRefObijects. As the name implies, these objects are mar-
shaled by reference-—instead of passing a copy of the object over the network,
only a pointer to this object, known as an ObjRef, will travel. Contrary to com-
mon pointers in languages like C++, ObjRefs don’t reference a memory address
but instead contain a network address (like a TCP/IP address and TCP port) and
an object ID that’s employed on the server to identify which object instance is
used by the calling client. (You can read more on ObjRefs in Chapter 7.) On the
client side these ObjRefs are encapsulated by a proxy object (actually, by two
proxies, but you also get the chance to read more on those in Chapter 7).

After creating two references to client-activated objects on a remote server,
for example, the client will hold two TransparentProxy objects. These objects will

contain an ObjRef object, which will in turn point to one of the two distinct
CAOs. This is shown in Figure 3-23.

— Client ~ — Server ———

| TransparentProxy |

|_indirect1y ObjRef p---f---- points to -
| TransparentProxy |

|—indirect1y ObjRef f---f---- points to

AN J/ AN J/

Figure 3-23. ObjRefs are pointing to server-side objects.

When a variable referencing a MarshalByRefObject is passed as a parameter
to a remote function, the following hapBe_r_lyfﬁEObiRef is taken from the proxy
object, gets serialized (ObjRefis [Serializable]), and is passed to the remote
machine (the second server in this example). On this machine, new proxy objects
are generated from the deserialized ObjRef. Any calls from the second machine
to the remote object are placed directly on the first server without any intermedi-
ate steps via the client.

= ——

68

Administrator
Multiserver Configuration

Administrator
When using multiple servers in an application in which remote objects on one
server will be passed as parameters to methods of a second server’s object, there
are a few things you need to consider.

Administrator
using multiple servers

Administrator
in which remote objects on one

Administrator
server

Administrator
be passed as parameters to methods of a second server’s object,

Administrator
MarshalByRefObjects.

Administrator
these objects are marshaled

Administrator
reference

Administrator
instead of passing a copy of the object over the network,

Administrator
only a pointer to this object, known as an ObjRef, will travel.

Administrator
After creating two references

Administrator
client-

Administrator
activated

Administrator
objects

Administrator
on a remote server,

Administrator
client will hold two TransparentProxy objects.

Administrator

Administrator

Administrator

Administrator
TransparentProxy
ObjRef indirectly
TransparentProxy
ObjRef indirectly
CAO #2
CAO #1 points to
points to
Client Server
Figure 3-23. ObjRefs are pointing to server-side objects.

Administrator
ObjRefs

Administrator
pointing

Administrator
server-side objects.

Administrator
CAO

Administrator
#

Administrator
CAO

Administrator
#

Administrator
ObjRef

Administrator
ObjRef

Administrator
Client

Administrator
Server

Administrator
When a variable referencing aMarshalByRefObject is passed as a parameter

Administrator
remote function,

Administrator

Administrator

Administrator

Administrator

Administrator
ObjRef

Administrator
On this machine,

Administrator
machine

Administrator
proxy objects

Administrator
are generated from the deserialized ObjRef.

Administrator

Administrator

Administrator

Administrator

Remoting in Action

NOTE As the second server will contact the first one directly, there has to
be a means of communication between them; that is, if there is a firewall
separating the two machines, you have to configure it to allow con-
nections from one server to the other.

@ning a Sample Multiserver Application>

In the following example, I show you how to create a multiserver application in
which Server 1 will provide a Singleton object that has an instance variable of
type int. The client will obtain a remote reference to this object and pass it to

a “worker object” located on a secondary server. This worker object is a SingleCall
service providing a doSomething() method, which takes an instance of the first
object as a parameter. Figure 3-24 shows the Unified Modeling Language (UML)
diagram for this setup.

System.Runtime.Remoting:: MarshalByRefObject

L I

General:: BaseRemoteObject General:: BaseWorkerObject
+setValue(in newval : int) : void +doSomething(in usethis : BaseRemoteObject)
+getValue() : int

Server2:: MyWorkerObject
Serveri:: MyRemoteObject

Figure 3-24. UML diagram of the multiserver example

69

Administrator
Examining a Sample Multiserver Application

Administrator
System.Runtime.Remoting:: MarshalByRefObject
+setValue(in newval : int) : void
+getValue() : int
General:: BaseRemoteObject
+doSomething(in usethis : BaseRemoteObject)
General:: BaseWorkerObject
Server1:: MyRemoteObject
Server2:: MyWorkerObject
Figure 3-24. UML diagram of the multiserver example

Administrator
UML diagram

Administrator
multiserver example

Administrator
Server1:: MyRemoteObject

Administrator
Server2:: MyWorkerObject

Chapter 3

70

NOTE For this example, I change the approach from using interfaces in
General.dll to using abstract base classes. The reason for the change is
that, upon passing a MarshalByRefObject to another server, the ObjRef is
serialized and deserialized. On the server side, during the deserialization,
the .NET Remoting Framework will generate a new proxy object and after-
wards will try to downcast it to the correct type (cast from
MarshalByRefObject to BaseRemoteObject in this example). This is possi-
ble because the ObjRef includes information about the type and its class
hierarchy. Unfortunately, the .NET Remoting Framework does not also
serialize the interface hierarchy in the ObjRef, so these interface casts
would not succeed.

Figures 3-25 to 3-27 illustrate the data flow between the various components.
In Figure 3-25, you see the situation after the first method call of the client on the
first server object. The client holds a proxy object containing the ObjRef that
points to the server-side Singleton object.

NOTE [use IDs like MRO#1 for an instance of MyRemoteODbject not
because that’s .NET-like, but because it allows me to more easily refer to
a certain object instance when describing the architecture.

Client Server 1

MyRemoteObject
(ID: MRO#1)

Figure 3-25. Client and single server

Administrator
Proxy
ObjRef to
MRO#1
MyRemoteObject
(ID: MRO#1)
Client Server 1
Figure 3-25. Client and single server

Administrator
Client

Administrator
Server

Administrator
ObjRef to
MRO#1
(ID: MRO#1)

Administrator
Client

Administrator
single server

In the next step, which you can see in Figure 3-26, the client obtains a refer-
ence to the MarshalByRefObject called MyWorkerObject on the second server. It

)

The ObjRef to this object (MRO#1) is serialized at the client and deserialized at
the server, and a new proxy object is generated that sits on the second server and
points to the object on the first. (Figure 3-27.) When MWO#1 now calls a method
on MRO#1, the call will go directly from Server 2 to Server 1.

Remoting in Action

r,—Client N Server 1

MyRemoteObject
(ID: MRO#1)

Server 2
ObjRef to)
MWO#1

Ca%é; method that takes
0#1 a5 Parametey

MyWorkerObject
(ID: MWO#1)

ObjRef to MRO#1 is
serialized and
passed to server 2

- /

Figure 3-26. Client calls a method on the second server with MRO#1 as parameter.

71

Administrator
In the next step,

Administrator
the client obtains a reference

Administrator
the MarshalByRefObject called MyWorkerObject

Administrator
second server.

Administrator

Administrator
ObjRef

Administrator
is serialized at the client

Administrator
deserialized at

Administrator
the server,

Administrator
new proxy object is generated

Administrator
sits on the second server

Administrator
points to the object on the first.

Administrator
Server 2
MyWorkerObject
(ID: MWO#1)
Client
Proxy
Proxy
ObjRef to
MWO#1
ObjRef to
MRO#1
Server 1
MyRemoteObject
(ID: MRO#1)
Calls method that takes
MRO#1 as parameter
ObjRef to MRO#1 is
serialized and
passed to server 2

Administrator
MWO#1
Calls method that takes
MRO#1 as parameter

Administrator
MRO#

Administrator
1)

Administrator
Server

Administrator
2

Administrator
Server

Administrator
1

Administrator
ObjRef to MRO#1 is
serialized and
passed to server

Administrator
Client

Administrator
second server with MRO#1 as parameter.

Chapter 3

72

Server 1

Client
~ N

MyRemoteObject
(ID: MRO#1)

ObjRef to
MRO#1

Calls to MRO%1 go
directly from Server 2
to Server 1 without [T
passing the client

ObjRef to
MWO#1

Calls on MROH1

~ Server 2 ~
NG ‘/
ObjRef to
MRO#1
MyWorkerObject
(ID: MWO#1)
- J

Figure 3-27. Calls to the first server will go there directly without passing

the clicnt

Implementing the Shared Assembly

In the shared assembly, which is shown in Listing 3-19, you have to change the
approach from using interfaces (which have been used in the prior examples) to
abstract base classes because of the reasons stated previously. These are the
superclasses of the classes you will implement in the two servers, therefore they
have to descend from MarshalByRefObject as well.

Listing 3-19. Using Abstract Base Classes in the Shared Assembly
using System;

namespace General

{
public abstract class BaseRemoteObject: MarshalByRefObject

Administrator
Server 2
MyWorkerObject
(ID: MWO#1)
Proxy
ObjRef to
MRO#1
Client
Proxy
Proxy
ObjRef to
MWO#1
ObjRef to
MRO#1
Server 1
MyRemoteObject
(ID: MRO#1)
Calls on MRO#1
Calls to MRO#1 go
directly from Server 2
to Server 1 without
passing the client
Figure 3-27. Calls to the first server will go there directly without passing
the client.

Administrator
Proxy
ObjRef to
MRO#1
Calls to MRO#1 go
directly from Server 2
to Server 1 without
passing the client

Administrator
on

Administrator
Calls

Administrator
Server

Administrator
2

Administrator
Server

Administrator
1

Administrator
MWO#

Administrator
ObjRef to
MRO#1

Administrator
MyWorkerObject
(ID: MWO#1)

Administrator
Calls to the first server

Administrator
there directly without passing

Administrator
the client.

Remoting in Action

{
public abstract void setValue(int newval);
public abstract int getValue();
}
public abstract class BaseWorkerObject: MarshalByRefObject
{
public abstract void doSomething(BaseRemoteObject usethis);
}

The BaseRemoteObject’s descendant is a Singleton located on the first server,
and it allows the client to set and read an int as state information. The
BaseWorkerObject’s implementation is placed in Server 2 and provides a method
that takes an object of type BaseRemoteObject as a parameter.

Implementing the First Server

The first server very closely resembles the servers from the other examples. The

only difference is that MyRemoteObiject is no direct child of MarshalByRefObject,

but instead is a descendant of BaseRemoteObject, defined in the shared assembly.
This object, implemented as a Singleton, is shown in Listing 3-20.

Listing 3-20. The First Server

using System;

using System.Runtime.Remoting;

using General;

using System.Runtime.Remoting.Channels.Http;
using System.Runtime.Remoting.Channels;

namespace Server

{
class MyRemoteObject: BaseRemoteObject

{

int myvalue;
public MyRemoteObject()

{

Console.WriteLine("MyRemoteObject.Constructor: New Object created");

73

Chapter 3

74

public override void setValue(int newval)

{
Console.WritelLine("MyRemoteObject.setValue(): old {0} new {1}",
myvalue,newval);
myvalue = newval;
}
public override int getValue()
{
Console.WritelLine("MyRemoteObject.getValue(): current {0}",myvalue);
return myvalue;
}
}
class ServerStartup
{
static void Main(string[] args)
{
Console.Writeline ("ServerStartup.Main(): Server [1] started");
HttpChannel chnl = new HttpChannel(1234);
ChannelServices.RegisterChannel(chnl);
RemotingConfiguration.RegisterWellknownServiceType(
typeof(MyRemoteObject),
"MyRemoteObject.soap",
WellKnownObjectMode.Singleton);
// the server will keep running until keypress.
Console.ReadlLine();
}
}

Implementing the Second Server

The second server works differently from those in prior examples. It provides
a SingleCall object that accepts a BaseRemoteObject as a parameter. The SAO
will contact this remote object, read and output its state, and change it
before returning.

The server’s startup code is quite straightforward and works the same as in
the preceding examples. It opens an HTTP channel on port 1235 and registers the
well-known object. This second server is shown in Listing 3-21.

NOTE When running two servers on one machine, you have to give the
servers different port numbers. Only one application can occupy a certain
port at any given time. When developing production-quality applications,
you should always allow the user or system administrator to configure the
port numbers in a configuration file, via the registry or using a GUL

Listing 3-21. The Second Server

using System;

using System.Runtime.Remoting;

using General;

using System.Runtime.Remoting.Channels.Http;
using System.Runtime.Remoting.Channels;
using System.Collections;

namespace Server

{
class MyWorkerObject: BaseWorkerObject
{
public MyWorkerObject()
{
Console.WriteLine("MyWorkerObject.Constructor: New Object created");
}
public override void doSomething(BaseRemoteObject usethis)
{
Console.WriteLine("MyWorkerObject.doSomething(): called");
Console.WriteLine("MyWorkerObject.doSomething(): Will now call" +
"getValue() on the remote obj.");
int tmp = usethis.getValue();
Console.WriteLine("MyWorkerObject.doSomething(): current value of " +
"the remote obj.; {0}", tmp);
Console.Writeline("MyWorkerObject.doSomething(): changing value to 70");
usethis.setValue(70);
}
}

Remoting in Action

75

Chapter 3

76

class ServerStartup

{

static void Main(string[] args)

{

Console.Writeline ("ServerStartup.Main(): Server [2] started");

HttpChannel chnl = new HttpChannel(1235);
ChannelServices.RegisterChannel(chnl);

RemotingConfiguration.RegisterWellKnownServiceType(

typeof (MyWorkerObject),
"MyWorkerObject.soap",

WellKnownObjectMode.SingleCall);

// the server will keep running until keypress.
Console.ReadlLine();

Running the Sample

When the client is started, it first acquires a remote reference to MyRemoteObject
running on the first server. It then changes the object’s state to contain the

value 42 and afterwards reads the value from the server and outputs it in

the console window (see Figure 3-28).

-Main¢

-Main¢):
-Main¢>:
-Main¢):
-Main<():
-Main¢(>:

Reference to rem.ohj. on Server [1] acquired
Will set value to 42
Mew szerver side value 42

Reference to rem. workerohj. on Server [2] acquired
Will now call method on Sruv [2]
New server side value 78

Figure 3-28. The client’s output

Remoting in Action

Next it fetches a remote reference to MyWorkerObject running on the second
server. The client calls the method doSomething() and passes its reference to
MyRemoteObject as a parameter. When Server 2 receives this call, it contacts
Server 1 to read the current value from MyRemoteObject and afterwards changes
it to 70. (See Figures 3-29 and 3-30.)

ServerStartup.Main{>: Server [1]1 started
MyRemoteObject.Constructor: New Object created
MyRemoteObject.setlaluec?: old B new 42
MyRemoteObhject.getUalue(?: current 42
MyRemoteOhbhject.getUalue(current 42
MyRemoteOhbject.setlUalue(old 42 new 7@

MyRemoteObject.getUalue(d: current 78

Figure 3-29. The first server’s output

ServerStartup.Main¢>: Server [2] started
MyllorkerObject.Conztructor: New Object created
MyllorkerObject.Constructor: New Object created
MyllorkerOhject.doSomething<{>: called

MyllorkerObject.doSomething<>: Will now callgetUalue{> on the remote
MyllorkerObhject.doSomething<{»: current value of the remote ohj.; 42

MyllorkerOhject.doSomething(>: changing value to 78

Figure 3-30. The second server’s output

When the call from client to the second server returns, the client again con-
tacts MyRemoteObject to obtain the current value, 70, which shows that your
client really has been talking to the same object from both processes.

@ed Assemblies >

As you've seen in this chapter, .NET Remoting applications need to share com-
mon information about remoteable types between server and client. Contrary to
other remoting schemas like CORBA, Java RMI, and J2EE E]Bs, with which you
don’t have a lot of choice for writing these shared interfaces, base classes, and
metadata, the .NET Framework gives you at least four possible ways to do so, as
I discuss in the following sections.

77

Administrator
Shared Assemblies

Administrator
Contrary to
other remoting schemas like CORBA, Java RMI, and J2EE EJBs, with which you
don’t have a lot of choice for writing these shared interfaces,

Administrator

Chapter 3

78

Shared Implementation

The first way to share information about remoteable types is to implement your
server-side objects in a shared assembly and deploy this to the client as well. The
main advantage here is that you don't have any extra work. Even though this
might save you some time during implementation, I really recommend against
this approach. Not only does it violate the core principles of distributed appli-
cation development, but it also allows your clients, which are probably third
parties accessing your ERP system to automate order entry, to use ILDASM or
one of the upcoming MSIL-to-C# decompilers to disassemble and view your
business logic. Unfortunately, this approach is shown in several MSDN examples.

Nevertheless, there are application scenarios that depend on this way of
sharing the metadata. When you have an application that can be used either con-
nected or disconnected and will access the same logic in both cases, this might
be the way to go. You can then “switch” dynamically between using the local
implementation and using the remote one.

Shared Interfaces

In the first examples in this book, I show the use of shared interfaces. With this
approach, you create an assembly that is copied to both the server and the client.
The assembly contains the interfaces that will be implemented by the server. The
disadvantage to using this process of sharing the metadata is that you won’t be
able to pass those objects as parameters to functions running in a different con-
text (either on the same or another server or on another client) because the
resulting MarshalByRefObject cannot be downcast to these interfaces.

Shared Base Classes

Instead of sharing interfaces between the client and the server, you can also cre-
ate abstract base classes in a shared assembly. The server-side object will inherit
from these classes and implement the necessary functionality. The big advantage
here is that abstract base classes are, contrary to the shared interfaces, capable of
being passed around as parameters for methods located in different
AppDomains. Still, this approach has one disadvantage: you won't be able to use
those objects without Activator.GetObject() or a factory. Normally when the
.NET Framework is configured correctly on the client side, it is possible to use
the new operator to create a reference to a remote object. Unfortunately, you can
never create a new instance of an abstract class or an interface, so the compiler
will block this functionality.

Administrator

Administrator

Administrator

SoapSuds-Generated Metadata

As each of the other approaches has a drawback, let’s see what SoapSuds can do
for you. This program’s functionality is to extract the metadata (that is, the type
definition) from a running server or an implementation assembly and generate

a new assembly that contains only this meta information. You will then be able to
reference this assembly in the client application without manually generating
any intermediate shared assemblies.

Calling SoapSuds

SoapSuds is a command-line utility, therefore the easiest way to start it is to bring
up the Visual Studio .NET Command Prompt by selecting Start > Programs >
Microsoft Visual Studio .NET > Visual Studio .NET Tools. This command prompt
will have the path correctly set so that you can execute all .NET Framework SDK
tools from any directory.

Starting SoapSuds without any parameters will give you detailed usage infor-
mation. To generate a metadata DLL from a running server, you have to call
SoapSuds with the -url parameter:

soapsuds -url:<URL> -0a:<OUTPUTFILE>.DLL -nowp

NOTE You normally have to append ?wsdl to the URL your server regis-
tered for a SOA to allow SoapSuds to extract the metadata.

To let SoapSuds extract the information from a compiled DLL, you use
the -ia parameter:

soapsuds -ia:<assembly> -0a:<OUTPUTFILE>.DLL -nowp

Wrapped Proxies

When you run SoapSuds in its default configuration (without the -nowp parame-
ter) by passing only a URL as an input parameter and telling it to generate an
assembly, it will create what is called a wrapped proxy. The wrapped proxy can
only be used on SOAP channels and will directly store the path to your server.
Normally you do not want this.

Remoting in Action

79

Administrator

Administrator
Calling SoapSuds

Administrator
soapsuds -url:<URL> -oa:<OUTPUTFILE>.DLL -nowp

Administrator
soapsuds -ia:<assembly> -oa:<OUTPUTFILE>.DLL -nowp

Administrator
soapsuds -ia:<assembly> -oa:<OUTPUTFILE>.DLL -nowp

Administrator
SoapSuds extract the information from a compiled DLL,

Chapter 3

80

NOTE This behavior is useful when you want to access a third-party Web
Service whose application URL you happen to have.

I normally recommend using wrapped proxies only when you want to
quickly test a SOAP remoting service. As an example, in the next section I show
you how to implement a server without previously specifying any shared inter-
faces or base classes.

Implementing the Server

The server in this example will be implemented without any up-front definition
of interfaces. You only need to create a simplistic SAO and register an HTTP
channel to allow access to the metadata and the server-side object, as shown in
Listing 3-22.

Listing 3-22. Server That Presents a SAO
using System;

using System.Runtime.Remoting;

using System.Runtime.Remoting.Channels.Http;
using System.Runtime.Remoting.Channels;

namespace Server

{

class SomeRemoteObject: MarshalByRefObject

{
public void doSomething()
{

Console.Writeline("SomeRemoteObject.doSomething() called");

}

}

class ServerStartup

{

static void Main(string[] args)

{

Console.WritelLine ("ServerStartup.Main(): Server started");

HttpChannel chnl = new HttpChannel(1234);
ChannelServices.RegisterChannel(chnl);
RemotingConfiguration.RegisterWellknownServiceType(

Administrator

Administrator
Listing 3-22. Server That Presents a SAO
using System;
using System.Runtime.Remoting;
using System.Runtime.Remoting.Channels.Http;
using System.Runtime.Remoting.Channels;
namespace Server
{
class SomeRemoteObject: MarshalByRefObject
{
public void doSomething()
{
Console.WriteLine(“SomeRemoteObject.doSomething() called”);
}
}
class ServerStartup
{
static void Main(string[] args)
{
Console.WriteLine (“ServerStartup.Main(): Server started”);
HttpChannel chnl = new HttpChannel(1234);
ChannelServices.RegisterChannel(chnl);
RemotingConfiguration.RegisterWellKnownServiceType(

Administrator
namespace Server

Administrator
class ServerStartup

Administrator
class ServerStartup
{
static void Main(string[] args)
{
Console.WriteLine (“ServerStartup.Main(): Server started”);
HttpChannel chnl = new HttpChannel(1234);
ChannelServices.RegisterChannel(chnl);
RemotingConfiguration.RegisterWellKnownServiceType(

Administrator
HttpChannel chnl = new HttpChannel(1234);
ChannelServices.RegisterChannel(chnl);
RemotingConfiguration.RegisterWellKnownServiceType(

typeof(SomeRemoteObject),
"SomeRemoteObject.soap”,
WellKnownObjectMode.SingleCall);

// the server will keep running until keypress.
Console.Readline();

Generating the SoapSuds Wrapped Proxy

To generate a wrapped proxy assembly, use the SoapSuds command line shown
in Figure 3-31. The resulting meta.dll should be copied to the client directory, as
you will have to reference it when building the client-side application.

Remoting in Action

H:isrsoapsuds —url:http:/7localhost:1234/SomeRemotelbject.soap?wsdl —oa:meta.dll mm

s

Figure 3-31. SoapSuds command line used to generate a wrapped proxy

Implementing the Client

Assuming you now want to implement the client application, you first have to set
areference to the meta.dll in the project’s References dialog box in VS .NET or
employ the /r:meta.dll parameter to the command-line compiler. You can then
use the Server namespace and directly instantiate a SomeRemoteObject using
the new operator, as shown in Listing 3-23.

Listing 3-23. Wrapped Proxies Simplify the Client’s Source Code
using System;
using Server;

namespace Client

{

class Client

{

static void Main(string[] args)

{

81

Administrator
typeof(SomeRemoteObject),
“SomeRemoteObject.soap”,
WellKnownObjectMode.SingleCall);
// the server will keep running until keypress.
Console.ReadLine();
}
}
}

Administrator
typeof(SomeRemoteObject),
“SomeRemoteObject.soap”,
WellKnownObjectMode.SingleCall);

Administrator
typeof(SomeRemoteObject),
“SomeRemoteObject.soap”,
WellKnownObjectMode.SingleCall);
// the server will keep running until keypress.
Console.ReadLine();
}

Administrator

Administrator
Figure 3-31. SoapSuds command line used to generate a wrapped proxy

Administrator
SoapSuds

Administrator
to generate a wrapped proxy

Administrator

Administrator
Listing 3-23.Wrapped Proxies Simplify the Client’s Source Code
using System;
using Server;
namespace Client
{
class Client
{
static void Main(string[] args)
{

Administrator
namespace Client

Administrator
Client

Administrator
Main(

Chaer3

Console.Writeline("Client.Main(): creating rem. reference");
SomeRemoteObject obj = new SomeRemoteObject();
Console.Writeline("Client.Main(): calling doSomething()");
obj.doSomething();

Console.WritelLine("Client.Main(): done ");

Console.ReadlLine();

Even though this code looks intriguingly simply, I recommend against using
a wrapped proxy for several reasons: the server’s URL is hard coded, and you can
only use an HTTP channel and not a TCP channel.

When you start this client, 1t will generate the output shown in Figure 3-32.
Check the server’s output in Figure 3-33 to see that doSomething() has really been
called on the server-side object.

" Remoting.MET' Ch03" SoapSuds\rappe

Client.Main<>»: creating rem. reference
Client.Main<>»: calling doSomething<>
Client_Main<>: done

Figure 3-32. Client’s output when using a wrapped proxy

i Remuting.NET"-.,EhDﬁ"-.,SuapSudsWrapp'

Seprveritartup.Main<>: Server started
SomeRemoteObject .doSomething<> called

Figure 3-33. The server’s output shows that doSomething() has been called.

82

Administrator
Console.WriteLine(“Client.Main(): creating rem. reference”);
SomeRemoteObject obj = new SomeRemoteObject();
Console.WriteLine(“Client.Main(): calling doSomething()”);
obj.doSomething();
Console.WriteLine(“Client.Main(): done “);
Console.ReadLine();
}
}
}
Chapter 3

Administrator
SomeRemoteObject obj = new SomeRemoteObject();

Administrator
obj.doSomething();

Administrator
When you start this client, it will generate the output shown in Figure 3-32.
Check the server’s output in Figure 3-33 to see that doSomething() has really been
called on the server-side object.
Figure 3-32. Client’s output when using a wrapped proxy

Administrator
recommend against using

Administrator
a wrapped proxy

Administrator
Client’s

Administrator
when using a wrapped proxy

Administrator
The server’s output

Administrator
that doSomething() has been called.

Administrator
Figure 3-33. The server’s output shows that doSomething() has been called.

Remoting in Action

Wrapped Proxy Internals

Starting SoapSuds with the parameter -gc instead of -oa:<assemblyname> will
generate C# code in the current directory. You can use this code to manually
compile a DLL or include it directly in your project.

Looking at the code in Listing 3-24 quickly reveals why you can use it without
any further registration of channels or objects. (I strip the SoapType attribute,
which would normally contain additional information on how to remotely call
the object’s methods.)

Listing 3-24. A SoapSuds-Generated Wrapped Proxy
using System;

using System.Runtime.Remoting.Messaging;

using System.Runtime.Remoting.Metadata;

using System.Runtime.Remoting.Metadata.W3cXsd2001;

namespace Server {

public class SomeRemoteObject :
System.Runtime.Remoting.Services.RemotingClientProxy

// Constructor
public SomeRemoteObject()

{
base.ConfigureProxy(this.GetType(),
"http://localhost:1234/SomeRemoteObject.soap");
}
public Object RemotingReference
{
get{return(_tp);}
}

[SoapMethod(SoapAction="http://schemas.microsoft.com/clr/nsassem/
Server.SomeRemoteObject/Server#doSomething™)]
public void doSomething()

{
((SomeRemoteObject) _tp).doSomething();

83

Administrator

Administrator
You can use this code to manually
compile a DLL or include it directly in your project.

Chapter 3

84

What this wrapped proxy does behind the scenes is provide a custom imple-
mentation/extension of RealProxy (which is the base for RemotingClientProxy)
so that it can be used transparently. This architecture is shown in detail in
Chapter 7.

Nonwrapped Proxy Metadata

Fortunately, SoapSuds allows the generation of nonwrapped proxy metadata as
well. In this case, it will only generate empty class definitions, which can then be
used by the underlying .NET Remoting TransparentProxy to generate the true
method calls—no matter which channel you are using.

This approach also gives you the huge advantage of being able to use config-
uration files for channels, objects, and the corresponding URLs (more on this in
the next chapter) so that you don’t have to hard code this information. In the fol-
lowing example, you can use the same server as in the previous example, only
changing the SoapSuds command and implementing the client in a different way.

Generating the Metadata with SoapSuds
As you want to generate a metadata-only assembly, you have to pass the -nowp

parameter to SoapSuds to keep it from generating a wrapped proxy (see
Figure 3-34).

%% INET cmnd

H:iv>soapsuds —nowp —url:http:~slocalhost:1234-SomeRemoteObject.soap?wsdl
—oa:meta.dll

Figure 3-34. SoapSuds command line for a metadata-only assembly

Implementing the Client

When using metadata-only output from SoapSuds, the client looks a lot different
from the previous one. In fact, it closely resembles the examples I show you at the
beginning of this chapter.

First you have to set a reference to the newly generated meta.dll from the
current SoapSuds invocation and indicate that your client will be using this
namespace. You can then proceed with the standard approach of creating and
registering a channel and calling Activator.GetObject() to create a reference to
the remote object. This is shown in Listing 3-25.

Remoting in Action

Listing 3-25. The Client with a Nonwrapped Proxy
using System;

using System.Runtime.Remoting;

using System.Runtime.Remoting.Channels.Http;

using System.Runtime.Remoting.Channels;

using Server;

namespace Client

{
class Client
{
static void Main(string[] args)
{
HttpChannel chnl = new HttpChannel();
ChannelServices.RegisterChannel(chnl);
Console.WriteLine("Client.Main(): creating rem. reference");
SomeRemoteObject obj = (SomeRemoteObject) Activator.GetObject (
typeof (SomeRemoteObject),
"http://localhost:1234/SomeRemoteObject.soap");
Console.WriteLine("Client.Main(): calling doSomething()");
obj.doSomething();
Console.WriteLine("Client.Main(): done ");
Console.ReadlLine();
}
}
}

When this client is started, both the client-side and the server-side output
will be the same as in the previous example (see Figures 3-35 and 3-36).

emoting.NET" ChD3' SoapsudsMetaData’,C

Client.Main< creating rem. reference
Client .Main<>: calling doSomething<C)
Client .Main<>: done

Figure 3-35. The client’s output when using a metadata-only assembly

85

Chapter 3

86

Remoting.NET' ChD3' SoapSudsMetaDaka’,

CerverStartup.Maind(}: Server started
ComeRemoteObject .doSomething<> called

Figure 3-36. The server’s output is the same as in the previous example.

Summary

In this chapter you read about the basics of distributed .NET applications using
.NET Remoting. You now know the difference between ByValue objects and
MarshalByRefObjects, which can be either server-activated objects (SAO) or
client-activated objects (CAO). You can call remote methods asynchronously,
and you know about the dangers and benefits of one-way methods. You also
learned about the different ways in which a client can receive the necessary
metadata to access remote objects, and that you should normally use the -nowp
parameter with SoapSuds.

It seems that the only thing that can keep you from developing your first real-
world .NET Remoting application is that you don’t yet know about various issues
surrounding configuration and deployment of such applications. These two top-
ics are covered in the following chapter.

