
Architecture of the .NET Framework

1

Chapter 1

Architecture of the .NET Framework

The .NET Framework development platform introduces many new concepts, technologies, and terms. The goal of this
chapter is to give an overview of the .NET Framework: to show how it is architected, to introduce some of the new
technologies, and to define many of the new terms. I’ll also take you through the process of building your source code
into an application or a set of redistributable components (types), and then explain how these components execute.

Compiling Source Code into Managed Modules
OK, so you’ve decided to use the .NET Framework as your development platform. Great! Your first step is to determine
what type of application or component you intend to build. Let’s just assume that you’ve handled this minor detail,
everything is designed, the specifications are written, and you’re ready to start development.

Next, you must decide what programming language to use. This is usually a difficult task because different languages
offer different capabilities. For example, in unmanaged C/C++, you have pretty low-level control of the system. You can
manage memory exactly the way you want to, create threads easily if you need to, and so on. Visual Basic 6, on the other
hand, allows you to build UI applications very rapidly and allows the easy control of COM objects and databases.

If you use the .NET Framework, your code targets the common language runtime (CLR), which affects your decision
about a programming language. The common language runtime is just what its name says it is: A runtime that is
usable by different and varied programming languages. The features of the CLR are available to any and all
programming languages that target it-period. If the runtime uses exceptions to report errors, then all languages get
errors reported via exceptions. If the runtime allows you to create a thread, then any language can create a thread.

In fact, at runtime, the CLR has no idea which programming language the developer used for the source code. This
means that you should choose whatever programming language allows you to express your intentions most easily. You
may develop your code in any programming language you desire as long as the compiler you use to compile your code
targets the CLR.

So if what I say is true, then what is the advantage of using one programming language over another? Well, I think of
compilers as syntax checkers and "correct code" analyzers. They examine your source code, ensure that whatever you’ve
written makes some sense, and then output code that describes your intention. Simply put, different programming
languages allow you to develop using different syntax. Don’t underestimate the value of this. For mathematical or
financial applications, expressing your intentions using APL syntax can save many days of development time when
compared to expressing the same intention using Perl syntax, for example.

Microsoft is creating several language compilers that target the runtime: C++ with managed extensions, C#
(pronounced “C sharp”), Visual Basic.NET, JScript, Java, and an intermediate language (IL) Assembler. In addition to
Microsoft, there are several other companies creating compilers that produce code that targets the CLR. At this writing, I
am aware of compilers for Alice, APL, COBOL, Component Pascal, Eiffel, Fortran, Haskell, Mercury, ML, Mondrian,
Oberon, Perl, Python, RPG, Scheme, and Smalltalk.

The figure on the next page shows the process of compiling source code files:

Administrator
The .NET Framework development platform introduces many new concepts, technologies, and terms. The goal of this
chapter is to give an overview of the .NET Framework: to show how it is architected, to introduce some of the new
technologies, and to define many of the new terms. I’ll also take you through the process of building your source code
into an application or a set of redistributable components (types), and then explain how these components execute.

Administrator
The goal of this

Administrator
chapter

Administrator
overview of the .NET Framework:

Administrator
architected,

Administrator
take you through the process of building your source code

Applied .NET Framework Programming

 2

As the figure shows, you can create source code files using any programming language that supports the CLR. Then, you
use the corresponding compiler to check syntax and analyze the source code. Regardless of which compiler you use, the
result is a managed module. A managed module is a standard Windows portable executable (PE) file that requires the
CLR to execute. In the future, other operating systems may use the PE file format as well.

A Managed Module is composed of the following parts:

Part Description
PE header This is the standard Windows PE file header, which is similar to the

Common Object File Format (COFF) header. The PE header indicates the
type of file--GUI, CUI, or DLL—and also has a timestamp indicating when
the file was built. For modules that contain only IL code (see below,
Intermediate Language Code), the bulk of the information in the PE header
is ignored. For modules that contain native CPU code, this header contains
information about the native CPU code.

CLR header This header contains the information (interpreted by the CLR and utilities)
that makes this a managed module. It includes the version of the CLR
required, some flags, the MethodDef metadata token of the managed
module’s entry point method (Main method), and the location/size of the
module’s metadata, resources, strong name, some flags, and other less
interesting stuff.

Metadata Every managed module contains metadata tables, of which there are 2 main
types: those that describe the types and members defined in your source
code, and those that describe the types and members referenced by your
source code.

Administrator

Administrator

Administrator
Regardless of which compiler you use, the
result is a managed module.

Administrator

Administrator

Administrator
A Managed Module is composed of the following parts:

Administrator
PE header

Administrator
CLR header

Administrator
Metadata

Administrator
standard Windows PE file header,

Administrator
indicates the

Administrator
type of file--GUI, CUI, or DLL

Administrator
timestamp

Administrator
For modules that contain native CPU code, this header contains
information about the native CPU code.

Administrator
information

Administrator
interpreted

Administrator
CLR

Administrator
utilities)

Administrator
version of the CLR

Administrator
Main method),

Administrator
location/size of the

Administrator
module’s metadata,

Administrator
strong

Administrator
name,

Administrator
contains metadata tables,

Administrator
2 main

Administrator
types:

Administrator
types and members

Administrator
defined in your

Administrator
referenced by your

Architecture of the .NET Framework

3

Part Description
Intermediate Language (IL) Code This is the code that was produced by the compiler as it compiled the source

code. IL is later compiled by the CLR into native CPU instructions.

Most compilers of the past produced code targeted to a specific CPU architecture, such as x86, IA64, Alpha, or PowerPC.
All CLR-compliant compilers produce intermediate language (IL) code instead. IL code is sometimes referred to as
managed code, because its lifetime and execution are managed by the CLR. IL code is discussed later in this chapter.

In addition to emitting IL, every compiler targeting the CLR is required to emit full metadata into every managed
module. In brief, metadata is simply a set of data tables that describe what is defined in the module, such as types and
their members. In addition, metadata also has tables indicating what the managed module references, such as imported
types and their members. Metadata is a superset of older technologies such as type libraries and IDL files. The important
thing to note is that CLR metadata is far more complete than its predecessors. And, unlike type libraries and IDL,
metadata is always associated with the file that contains the IL code. In fact, the metadata is always embedded in the
same EXE/DLL as the code, making it impossible to separate the two. Since the metadata and code are produced by the
compiler at the same time and are bound into the resulting managed module, the metadata and the IL code it describes
are never out of sync with one another.

Metadata has many uses. Here are some of them:

• Metadata removes the need for header and library files when compiling, because all the information
about the referenced types/members is contained in one file along with the IL that implements those
type/members. Compilers can read metadata directly from managed modules.

• Visual Studio uses metadata to help you write code. Its IntelliSense feature parses metadata to tell you
what methods a type offers and what parameters that method expects.

• The CLR code verification process uses metadata to ensure that your code performs only “safe”
operations. Verification is discussed shortly.

• Metadata allows an object’s fields to be serialized into a memory block, remoted to another machine, and
then deserialized, recreating the object and its state on the remote machine.

• Metadata allows the garbage collector to track the lifetime of objects. For any object, the garbage collector
can determine the type of the object, and from the metadata it knows which fields within that object refer
to other objects.

The next chapter, “Building, Packaging, Deploying, and Administering Applications and Types,” will describe metadata
in much more detail. And a little later in this chapter, we’ll explore intermediate language in more detail.

Four of the compilers that Microsoft offers--C#, Visual Basic, JScript, and the IL Assembler--always produce managed
modules, which require the CLR to execute. That is, end users must have the CLR installed on their machines in order to
execute any managed modules. This situation is similar to the one that end users face with MFC or VB 6 applications:
they must have the MFC or VB DLLs installed in order to run them.

The Microsoft C++ compiler, by default, builds unmanaged modules: the EXE or DLL files with which we are all
familiar. These modules do not require the CLR in order to execute. However, by specifying a new command-line switch,
the C++ compiler can produce managed modules that do require the CLR to execute. Of all the Microsoft compilers
mentioned, C++ is unique in that it is the only language that allows the developer to write both managed and

Administrator
Intermediate Language (IL) Code

Administrator
code

Administrator
produced by the compiler

Administrator
is later compiled by the CLR into native CPU instructions.

Administrator
All CLR-compliant compilers produce intermediate language (IL) code instead.

Administrator

Administrator

Administrator
every compiler targeting the CLR is required to emit full metadata into every managed

Administrator
module.

Administrator

Administrator

Administrator
metadata is always embedded in the

Administrator
same EXE/DLL as the code,

Administrator

Administrator
Metadata removes the need for header and library files when compiling,

Administrator
Compilers can read metadata directly from managed modules.

Administrator
Visual Studio

Administrator
to help you write code.

Administrator
CLR code verification process

Administrator
ensure that your code performs only “safe”

Administrator
Metadata allows

Administrator
object’s

Administrator
be serialized into a memory block,

Administrator
Metadata

Administrator
allows the garbage collector

Administrator
lifetime of objects.

Administrator

Administrator

Administrator
IL Assembler--

Administrator
produce managed

Administrator
modules,

Administrator
require the CLR to execute.

Administrator
Microsoft C++ compiler, by default, builds unmanaged modules: the EXE or DLL

Applied .NET Framework Programming

 4

unmanaged code and have it emitted into a single managed module. This can be a great feature because it allows
developers to write the bulk of their applications in managed code (for type-safety and component interoperability) but
continue to access their existing unmanaged C++ code.

Combining Managed Modules into Assemblies
The CLR doesn’t actually work with modules; it works with assemblies. An assembly is an abstract concept, which can be
difficult to grasp at first. First, an assembly is a logical grouping of one or more managed modules or resource files.
Second, an assembly is the smallest unit of reuse, security, and versioning. Depending on the choices you make with
your compilers or tools, you can produce a single-file assembly or you can produce a multi-file assembly.

Chapter 2, “Building, Packaging, Deploying, and Administering Applications and Types,” discusses assemblies in great
detail, so I don’t want to spend a lot of time on it here. All I want to do now is make you aware that there is this extra
conceptual notion that offers a way to treat a group of files as a single entity.

The figure below should help explain what assemblies are about:

In this figure, we are passing the file names of some managed modules and resource (or data) files to a tool. This tool
produces a single PE file that represents the logical grouping of files. This PE file contains a block of data called the
manifest, which is simply another set of metadata tables. These tables describe the assembly: the files that make it up,
the publicly exported types implemented by the files in the assembly, and the resource or data files that are associated
with it.

By default, compilers actually do the work of turning the emitted managed module into an assembly. That is, the C#
compiler emits a managed module that contains a manifest. The manifest indicates that the assembly consists of just the

Administrator
assembly is an abstract concept,

Administrator
The CLR doesn’t actually work with modules; it works with assemblies.

Administrator

Administrator
Combining Managed Modules into Assemblies

Administrator
assembly

Administrator
grouping of one or more managed modules

Administrator
assembly is the smallest unit of reuse,

Administrator
security,

Administrator
versioning.

Administrator
First,

Administrator
Second,

Administrator
figure below should help explain what assemblies are about:

Administrator

Administrator

Administrator

Administrator

Administrator

Administrator

Administrator

Administrator

Administrator

Administrator

Administrator

Administrator

Administrator

Administrator

Administrator

Administrator
This PE file contains a block of data called the

Administrator
manifest,

Administrator
simply another set of metadata tables.

Administrator
describe the assembly:

Administrator

Administrator

Administrator

Administrator
compilers actually do the work of turning the emitted managed module into an assembly.

Architecture of the .NET Framework

5

one file. So for projects that have just one managed module and no resource files, the assembly will be the managed
module, and you don’t have any additional steps to perform during your build process. If you wish to group a set of files
into an assembly, then you will have to be aware of more tools (such as the assembly linker, AL.exe) and their
command-line options. These tools and options are explained in the next chapter.

An assembly allows you to decouple the logical and physical notions of a reusable, deployable, versionable component.
The way in which you partition your code and resources into different files is completely up to you. For example, you
could put rarely used types or resources in separate files that are part of an assembly. The separate files could be
downloaded from the web as needed. If the files are never needed, they're never downloaded, saving disk space and
reducing installation time. An assembly lets you break up the physical deployment of the files but still treat them as a
single collection.

The modules in an assembly also include information, including version numbers, about referenced assemblies. This
information makes an assembly self-describing. In other words, the CLR knows everything that an assembly needs in
order to execute. No additional information is required in the registry or in the Active Directory, so deploying assemblies
is much easier than deploying unmanaged components.

Loading the Common Language Runtime
Each assembly that you build can either be an executable application or a DLL containing a set of types (components)
for use by an executable application. Of course, the CLR is responsible for managing the execution of code contained
within these assemblies. This means that the .NET Framework must be installed on the host machine. Microsoft has
created a redistribution package that you can freely ship to install the .NET Framework on your customer's machines.
Future versions of Windows will include the .NET Framework, at which point you will no longer need to ship it with your
assemblies.

You can tell whether the .NET Framework has been installed by looking for the MSCorEE.dll file in the
%windir%\system32 directory. The existence of this file tells you that the .NET Framework is installed. However, several
versions of the .NET Framework may be installed on a single machine simultaneously. If you want to determine exactly
which versions of the .NET Framework are installed, examine the subkeys under the following registry key:
HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\.NETFramework\policy.

When you build an EXE assembly, the compiler/linker emits some special information into the resulting assembly's PE
File header and the file's .text section. When the EXE file is invoked, this special information causes the CLR to load and
initialize. Then the CLR locates the entry point method for the application and lets the application start executing.

Similarly, if an unmanaged application calls LoadLibrary to load a managed assembly, the entry point
function for the DLL knows to load the CLR in order to process the code contained within the assembly.

For the most part, you do not need to know about or understand how the CLR actually gets loaded. For the curious,
however, I will explain how a managed EXE or DLL starts the CLR. If you’re not interested in this, feel free to skip to the
next section.

The figure on the next page summarizes how a managed EXE loads and initializes the CLR.

Administrator
modules in an assembly

Administrator
include information,

Administrator
version numbers,

Administrator
referenced assemblies.

Administrator
self-describing.

Administrator
Loading the Common Language Runtime

Administrator
CLR is responsible

Administrator
managing

Administrator
execution

Administrator
code

Administrator
within these assemblies.

Administrator
NET Framework must be installed

Administrator
can tell whether the .NET Framework has been installed

Administrator
MSCorEE.dll

Administrator

Administrator

Administrator

Administrator
compiler/linker emits some special information into the resulting assembly's PE

Administrator
File header

Administrator
file's .text section.

Administrator

Administrator

Administrator
do not need to know about or understand how the CLR actually gets loaded.

Administrator

Applied .NET Framework Programming

 6

When the compiler/linker creates an executable assembly, the following 6-byte x86 stub function is emitted into the .text
section of the PE file:

JMP _CorExeMain

The _CorExeMain function is imported from the Microsoft MSCorEE.dll dynamic-link library, and therefore
MSCorEE.dll is referenced in the import (.idata) section of the assembly file. (MSCorEE.dll stands for Microsoft
Component Object Runtime Execution Engine.) When the managed EXE file is invoked, Windows treats it just like any
normal (unmanaged) EXE file: the Windows loader loads the file and examines the .idata section to see that
MSCorEE.dll should be loaded into the process’s address space. Then, the loader obtains the address of the
_CorExeMain function inside MSCorEE.dll and fixes up the stub function’s JMP instruction in the managed
EXE file.

The primary thread for the process begins executing this x86 stub function, which immediately jumps to
_CorExeMain in MSCorEE.dll. _CorExeMain initializes the CLR and then looks at the CLR header for the
executable assembly to determine what managed entry point method should execute. The IL code for the method is then
compiled into native CPU instructions, after which the CLR jumps to the native code (using the process’s primary
thread). At this point, the managed application code is running.

The situation is similar for a managed DLL. When building a managed DLL, the compiler/linker emits a similar 6-byte
x86 stub function for a DLL assembly in the .text section of the PE file:

JMP _CorDllMain

Administrator

Administrator

Administrator

Administrator

Administrator

Administrator

Administrator

Administrator

Administrator

Administrator

Administrator

Administrator

Administrator

Administrator

Administrator

Administrator

Administrator

Administrator

Administrator
When the compiler/linker creates an executable assembly,

Administrator
6-byte x86 stub function

Administrator
JMP _CorExeMain

Administrator
into the .text

Administrator
The _CorExeMain function is imported from the Microsoft MSCorEE.dll dynamic-link library,

Administrator

Administrator

Administrator
When the managed EXE file is invoked,

Administrator

Administrator

Administrator
the loader obtains the address

Administrator
_CorExeMain function

Administrator
MSCorEE.dll

Administrator
fixes up the stub function’s JMP instruction in the managed

Administrator
EXE

Administrator
Windows loader loads

Administrator
and examines the .idata section

Administrator
MSCorEE.dll

Administrator
into the process’s address space.

Administrator
Engine.)

Administrator
Then,

Administrator
_

Administrator
execute.

Administrator
primary thread

Administrator
jumps to

Administrator
_CorExeMain

Administrator
MSCorEE.dll.

Administrator
CorExeMain initializes the CLR

Administrator
then looks at the CLR header

Administrator
executable assembly

Administrator
entry point

Administrator
The IL code for the method is then

Administrator
compiled into native CPU instructions, after which the CLR jumps to the native code

Administrator
JMP _CorDllMain

Architecture of the .NET Framework

7

The _CorDllMain function is also imported from the MSCorEE.dll, causing the .idata section for the DLL to
reference MSCorEE.dll. When Windows loads the DLL, it automatically loads MSCorEE.dll (if it isn’t already loaded),
obtains the address of the _CorDllMain function, and fixes up the 6 byte x86 JMP stub in the managed DLL.
The thread that called LoadLibrary to load the managed DLL then jumps to the x86 stub in the managed DLL
assembly, which immediately jumps to the _CorDllMain in MSCorEE.dll. _CorDllMain initializes the
CLR (if it hasn’t already been initialized for the process) and then returns so that the application can continue executing
as normal.

These 6-byte x86 stub functions are required to run managed assemblies on Windows 98, Windows 98SE, Windows ME,
Windows NT 4, and Windows 2000 because all these operating systems shipped long before the CLR became available.
Note that the 6-byte stub function is specifically for x86 machines. This stub does not work properly if the CLR is ported
to run on other CPU architectures. Because Windows XP and the Windows .NET Servers support both the x86 and the
IA64 CPU architectures, the loader for Windows XP and the Windows .NET Servers was modified to look specifically for
managed assemblies.

On Windows XP and the Windows .NET Servers, when a managed assembly is invoked (typically via
CreateProcess or LoadLibrary), the OS loader detects that the file contains managed code. It does this
by examining directory entry 14 in the PE file header (see
IMAGE_DIRECTORY_ENTRY_COM_DESCRIPTOR in WinNT.h). If this directory entry exists and is not
0, then the loader ignores the file’s import (.idata) section entirely and knows to automatically load MSCorEE.dll into
the address space for the process. Once loaded, the OS loader makes the process thread jump directly to the correct
function in MSCorEE.dll. The 6-byte x86 stub functions are ignored on machines running Windows XP and the Windows
.NET Servers.

One last note about managed PE files: Managed PE files always use the 32-bit PE file format; they do not use the newer
64-bit PE file format. On 64-bit Windows systems, the OS loader detects the managed 32-bit PE file and automatically
knows to create a 64-bit address space.

Executing the Code in Your Assembly
As mentioned earlier, managed modules contain both metadata and intermediate language (IL) code. IL is a CPU-
independent machine language created by Microsoft after consultation with several external commercial and academic
language/compiler writers. IL is much higher-level than most CPU machine languages. IL understands object types and
has instructions that create and initialize objects, call virtual methods on objects, and manipulate array elements
directly. It even has instructions that throw and catch exceptions for error handling. You can think of IL as an object-
oriented machine language.

Usually, developers prefer to program in a high-level language, such as C# or Visual Basic.NET. The compilers for all
these high-level languages produce IL. However, like any other machine language, IL can be written in assembly
language and Microsoft does provide an IL assembler, ILAsm.exe. Microsoft also provides an IL disassembler,
ILDasm.exe.

Some people are concerned that IL does not offer enough intellectual property protection for their
algorithms. In other words, you could build a managed module and someone else could use a tool, like
an IL disassembler, to reverse engineer exactly what your application code does.

Yes, it’s true that IL code is higher-level than most other assembly languages and, in general, reverse
engineering IL code is relatively simple. However, when you implement a web service or web form

Administrator
These 6-byte x86 stub functions

Administrator
to run managed assemblies on Windows 98, Windows 98SE, Windows ME,

Administrator
Because Windows XP and the Windows .NET Servers support both the x86 and the
IA64 CPU architectures, the loader for Windows XP and the Windows .NET Servers was modified to look specifically for
managed assemblies.

Administrator
On Windows XP and the Windows .NET Servers, when a managed assembly is invoked (typically via
CreateProcess or LoadLibrary), the OS loader detects that the file contains managed code. It does this
by examining directory entry 14 in the PE file header (see
IMAGE_DIRECTORY_ENTRY_COM_DESCRIPTOR in WinNT.h). If this directory entry exists and is not
0, then the loader ignores the file’s import (.idata) section entirely and knows to automatically load MSCorEE.dll into
the address space for the process. Once loaded, the OS loader makes the process thread jump directly to the correct
function in MSCorEE.dll. The 6-byte x86 stub functions are ignored on machines running Windows XP and the Windows
.NET Servers.

Administrator

Administrator
do not use the newer

Administrator
64-bit PE file format.

Administrator
64-bit Windows systems,

Administrator
OS loader detects the managed 32-bit PE file

Administrator
You can think of IL as an objectoriented

Administrator
machine

Administrator
language.

Administrator
Microsoft does provide an IL assembler,

Administrator

Administrator

Administrator

Administrator

Applied .NET Framework Programming

 8

application, your managed module resides on your server, inaccessible to anyone outside your
company. Outsiders cannot use any tool to see the IL code, so your intellectual property is completely
safe.

If you are concerned about any of your managed modules that you do distribute, then you can use the
Microsoft obfuscator utility (OB.exe), which is downloadable from http://www.GotDotNet.com. This
utility “scrambles” the names of all the private symbols in your managed module metadata. It will be
difficult for someone to “unscramble” the names and understand the purpose of each method. Note that
the Microsoft obfuscator scrambles metadata names only and does not scramble the IL code in anyway
since the CLR must be able to process unscrambled IL.

If you don’t feel that the obfuscator offers the kind of intellectual property protection that you desire,
then you can consider implementing your more-sensitive algorithms in some unmanaged module, which
will contain native CPU instructions instead of IL and metadata. Then, you can use the CLR’s
interoperability features to communicate between the managed and unmanaged portions of your
application. Of course, this assumes that you’re not worried about people reverse engineering the native
CPU instructions in your unmanaged code.

Any high-level language will most likely expose only a subset of the facilities offered by the CLR. IL assembly language,
however, gives a developer access to all the facilities of the CLR. So if your programming language of choice hides a CLR
feature that you really wish to take advantage of, you can write that portion of your code in IL assembly or in another
programming language that exposes the CLR feature you seek.

The only way for you to know what facilities are offered by the runtime is to read documentation specific to the CLR
itself. In this book, I try to concentrate on CLR features and how they are exposed or not exposed by the C# language. I
suspect that most other books and articles will present the CLR via a particular language and that most developers will
come to believe that the CLR offers only those features that the developer's chosen language exposes. As long as your
language allows you to accomplish what you're trying to do, this blurred perspective is not a bad thing.

Personally, I feel that an ability to switch programming languages easily with rich integration between
languages is an awesome feature of the CLR. I also believe that this is a feature that will, unfortunately,
often be overlooked by developers.

Programming languages like C# and Visual Basic.NET are excellent languages for doing I/O operations.
APL is an awesome language for doing advanced engineering or financial calculations. Through the CLR,
you can write the I/O portions of your application using C# and then write the engineering calculations
using APL. The CLR offers a level of integration between these languages that is unprecedented, and
really makes mixed-language programming worthy of consideration for many development projects.

An important thing to note about IL is that it is not tied to any specific CPU platform. This means that a managed
module containing IL can run on any CPU platform as long as the operating system running on that CPU platform
hosts a version of the CLR. Although the initial release of the CLR will run only on 32-bit Windows platforms, developing
an application using managed IL sets up a developer to be more independent of the underlying CPU architecture.

In October 2000, Microsoft (along with Intel and Hewlett-Packard as co-sponsors) proposed a large
subset of the .NET Frameworks to the ECMA (the European Computer Manufacturer’s Association) for
the purpose of standardization. The ECMA accepted this proposal and created a technical committee
(TC39) to oversee the standardization process. The technical committee is charged with the following
duties:

Administrator

Administrator

Administrator

Administrator

Administrator
October 2000, Microsoft

Administrator
proposed a large

Administrator
subset of the .NET Frameworks to the ECMA

Administrator
standardization.

Administrator
TC39)

Architecture of the .NET Framework

9

• Technical Group 1: Develop a dynamic scripting language standard (ECMAScript). Microsoft’s
implementation of ECMAScript is JScript.

• Technical Group 2: Develop a standardized version of the C# programming language.

• Technical Group 3: Develop a common language infrastructure (CLI) based on a subset of the
functionality offered by the .NET Framework’s CLR and class library. Specifically, the CLI defines a file
format, a common type system, an extensible metadata system, an intermediate language (IL), and
access to the underlying platform (P/Invoke). In addition, the CLI also defines a factorable (to allow for
small hardware devices) base class library designed for use by multiple programming languages.

Once the standardization is completed, these standards will be contributed to ISO/IEC JTC 1
(Information Technology). At this time, the technical committee will investigate further directions for
CLI, C#, and ECMAScript, as well as entertain proposals for any complementary or additional
technology. For more information about ECMA, please see http://www.ECMA.ch and
http://MSDN.Microsoft.com/Net/ECMA.

With the standardization of the CLI, C#, and ECMAScript, Microsoft won’t “own” any of these
technologies. Microsoft will simply be one company of many (hopefully) that are producing
implementations of these technologies. Certainly Microsoft hopes that their implementation will be the
best in terms of performance and customer-demand-driven features. This is what will help sales of
Windows, since the Microsoft “best of breed” implementation will only run on Windows. However, other
companies are free to implement these standards and compete against Microsoft.

Of course, IL instructions cannot be executed directly by today’s CPUs (although this may change someday). In order to
execute a method, its IL code must first be converted to native CPU instructions. To make this conversion, the CLR
provides a JIT (just-in-time) compiler.

The figure below shows what happens the first time a method is called.

Administrator
Technical Group 1:

Administrator
scripting

Administrator
Technical Group 2:

Administrator
C#

Administrator
Technical Group 3:

Administrator
CLI)

Administrator
ISO/IEC JTC

Administrator
information about ECMA,

Administrator
http://www.ECMA.ch

Administrator
http://MSDN.Microsoft.com/Net/ECMA.

Administrator
Microsoft won’t “own” any of these

Administrator
technologies.

Administrator
IL instructions cannot be executed directly by today’s CPUs

Administrator
The figure below shows what happens the first time a method is called.

Applied .NET Framework Programming

 10

Just before the Main method executes, the CLR detects all the types that are referenced by the code in Main. This
causes the CLR to allocate an internal data structure that is used to manage access to each referenced type. In the figure
above, the Main method refers to a single type, Console, causing the CLR to allocate a single internal structure.
This internal data structure contains an entry for each method defined by the type. Each entry holds the address where
the method implementation can be found. When initializing this structure, the CLR sets each entry to a function
contained inside the CLR itself. I call this function JITCompiler.

When Main makes its first call to WriteLine, the JITCompiler function is called. The
JITCompiler function is responsible for compiling a method’s IL code into native CPU instructions. Since the IL
is being compiled “just in time”, this component of the CLR is frequently referred to as a JITter or JIT Compiler.

When called, the JITCompiler function knows what method is being called and what type defines this method.
The JITCompiler function then searches the defining assembly’s metadata for the called method’s IL.
JITCompiler verifies and compiles the IL code into native CPU instructions, which are then saved in a
dynamically allocated block of memory. JITCompiler goes back to the type’s internal data structure and replaces
the address of the called method with the address of the block of memory containing the native CPU instructions.
Finally, JITCompiler jumps to the code in the memory block. This code is the implementation of the
WriteLine method (the version that takes a String parameter). When this code returns, execution resumes in
Main, as normal.

Suppose now that Main calls WriteLine a second time. This time, because the code for WriteLine has
already been verified and compiled, the call goes directly to the native code in the memory block, skipping the
JITCompiler function entirely. After the WriteLine method executes it returns to Main. The figure below
shows what the situation looks like when WriteLine is called the second time:

Administrator
CLR detects all the types

Administrator
before the Main

Administrator
In the figure

Administrator
Main

Administrator
refers

Administrator
type, Console,

Administrator
Each entry

Administrator
CLR sets each entry to a function

Administrator
When Main makes its first call

Administrator
is responsible for compiling a method’s

Administrator
IL

Administrator
code

Administrator
When called, the JITCompiler

Administrator
JITCompiler function then searches the defining assembly’s metadata for the called method’s

Administrator
verifies

Administrator
JITCompiler goes back

Administrator
replaces

Administrator
execution resumes

Administrator

Administrator

Administrator

Administrator

Administrator

Administrator
method executes,

Administrator
that are referenced by the code in Main.

Administrator
CLR to allocate an internal data structure

Administrator
used to manage access to each referenced type.

Administrator
This internal data structure contains an

Administrator
each method

Administrator
holds the address where

Administrator
method implementation

Administrator
When initializing this structure, the

Administrator
I call this function JITCompiler.

Administrator
to WriteLine,

Administrator
JITCompiler function is called.

Administrator
into native CPU instructions.

Administrator
JITter

Administrator
JIT

Administrator
Compiler.

Administrator
what

Administrator
method

Administrator
what

Administrator
type

Administrator
defines

Administrator
this

Administrator
method.

Administrator
and compiles the IL code into native CPU instructions,

Administrator
dynamically allocated block of memory.

Administrator

Administrator

Administrator
JITCompiler jumps to the code in the memory block.

Administrator

Administrator

Administrator

Administrator

Administrator

Administrator

Administrator

Administrator
Just

Administrator

Administrator

Administrator
type.

Administrator
found. When

Administrator
itself.

Administrator

Administrator

Administrator

Administrator

Architecture of the .NET Framework

11

The important thing to note is that the process incurs a performance hit only the first time a method is called. All
subsequent calls to the method execute at the full speed of the native code: Verification and compilation to native code is
not performed again.

Note that the JIT compiler stores the native CPU instructions in dynamic memory: The compiled code is discarded when
the application terminates. So if you run the application in the future or if you run two instances of the application
simultaneously (in two different operating system processes), then the JIT compiler will have to compile the IL to native
instructions again.

For most applications, the performance hit incurred by JIT compilation is not significant. Most applications tend to call
the same methods over and over again, so these methods will take the performance hit only once while the application
executes. Also, a process normally spends more time inside the method than it spends calling the method.

Be aware that the JIT compiler optimizes the native code just like the back end of an unmanaged C++ compiler. Again,
the optimization may take time, but the code will execute with much better performance than unoptimized code.

Developers coming from an unmanaged C or C++ background are probably thinking about the performance
ramifications of all this. After all, unmanaged code is compiled for a specific CPU platform, and when invoked, the code
can simply execute. In this managed environment, compiling the code is accomplished in two phases. First, the compiler
passes over our source code, doing as much work as possible in producing IL. But then, in order to actually execute the
code, the IL itself must be compiled into native CPU instructions at run time, requiring that more memory be allocated,
and requiring addition CPU time to do the work.

Believe me, I approached the CLR from a C/C++ background myself, so I was quite skeptical and concerned about this
additional overhead. The truth is that this second compilation stage that occurs at runtime does hurt performance and it
does allocate dynamic memory. However, Microsoft has done a lot of performance work to keep this additional overhead
to a minimum.

Applied .NET Framework Programming

 12

If you too are skeptical, then you should certainly build some applications to test the performance for yourself. In
addition, you should run some non-trivial managed applications produced by Microsoft or others and measure their
performance. I think you'll be surprised at how good the performance actually is.

In fact, hard as this might be to believe, many people (including me) think that managed applications could actually
out-perform unmanaged applications. For example, when the JIT compiler compiles the IL code into native code at
runtime, the compiler knows more about the execution environment than an unmanaged compiler would know. Here
are some ways that managed code could out-perform unmanaged code:

• A JIT compiler could detect that the application is running on a Pentium 4 and produce native code that
takes advantage of any special instructions offered by the Pentium 4. Usually, unmanaged applications
are compiled for the lowest common denominator CPU and avoid using special instructions that would
give the application a performance boost on newer CPUs.

• A JIT compiler could detect that a certain test is always false on the current host machine. For example, a
method with code like this:

if (numberOfCPUs > 1) {
 ...
}

could cause the JIT compiler to not generate any CPU instructions for the above code if the host machine
has only 1 CPU. In this case, the native code has been fine-tuned for the host machine: the code is
smaller and executes faster.

• The CLR could profile the code execution and recompile the IL into native code while the application
runs. The recompiled code could be reorganized to reduce incorrect branch predictions depending on the
observed execution patterns.

For these and many other reasons, you should expect future accomplishments with managed code to execute better than
today's unmanaged code. As I said, the performance today is quite good for most applications, and it promises to
improve as time goes on.

If your experiments show that the CLR's JIT compiler does not offer your application the kind of performance it requires,
then you might want to take advantage of the NGen.exe tool that ships with the .NET Framework SDK. This tool
compiles all the IL code for an assembly into native code and saves the resulting native code to a file on disk. At runtime,
when an assembly is loaded, the CLR automatically checks to see whether a precompiled version of the assembly also
exists, and if it does, the CLR loads the precompiled code so that no compilation at runtime is required.

IL and Verification

IL is stack-based, which means that all its instructions push operands onto an execution stack and pop results off the
stack. Accordingly, IL offers no instructions to manipulate registers. Compiler developers can easily produce IL code:
They don't have to think about managing registers, and there are fewer IL instructions (since none exist for
manipulating registers).

And here’s another simplification: IL instructions are typeless. For example, IL offers an add instruction that adds the last
two operands pushed on the stack. IL does not offer a 32-bit add instruction and a 64-bit add instruction. When the add
instruction executes, it determines the types of the operands on the stack and performs the appropriate operation.

Administrator
IL and Verification

Administrator
IL is stack-based,

Administrator
push operands onto an execution stack and pop results off the

Administrator
stack.

Administrator
IL instructions are typeless.

Administrator
IL offers an add instruction that adds the last

Administrator
When the add
operation.

Administrator

Architecture of the .NET Framework

13

In my opinion, the biggest benefit of IL is not that it abstracts away the underlying CPU. The biggest benefit is
application robustness. While compiling IL into native CPU instructions, the CLR performs a process called verification.
Verification examines the high-level IL code and ensures that everything it does is “safe.” For example, verification
checks that no memory is read from without having previously been written to, that every method is called with the
correct number of parameters, that each parameter is of the correct type, that every method’s return value is used
properly, that every method has a return statement, and so on.

The metadata for each managed module includes all the method and type information used by the verification process.
If the IL code is determined to be “unsafe,” then a System.Security.VerifierException
exception is thrown, preventing the method from executing.

By default, Microsoft’s C# and Visual Basic.NET compilers produce “safe” code. Safe code is code that is

verifiably safe. However, using C#’s unsafe keyword or using other languages (such as C++ with
Managed Extensions or IL Assembly language), you can produce code that cannot be verifiably safe.
That is, the code might, in fact, be safe, but the verification is unable to prove it.

To ensure that all methods in your managed module contain verifiably safe IL, you can use the
PEVerify.exe utility that ships with the .NET Framework SDK. When Microsoft developers test their C#
and Visual Basic.NET compilers, they run the resulting module through PEVerify to ensure that the
compiler always produces verifiably safe code. If PEVerify detects unsafe code, then Microsoft fixes the
compiler.

You may want to consider running PEVerify on your own modules before you package and ship them. If
PEVerify detects a problem, then there is a bug in the compiler and you should report this to Microsoft
(or whatever company produces the compiler you're using). If PEVerify doesn't detect any unverifiable
code, then you know that your code will run without throwing a VerifierException on the end-
user's machine.

Note that an administrator can elect to turn verification off (using the ".NET Management" Microsoft
Management Console Snap-In). With verification off, the JIT compiler will compile unverifiable IL into
native CPU instructions; however, the administrator is taking full responsibility for the code's behavior.

In Windows, each process has its own virtual address space. Separate address spaces are necessary because Windows can’t
trust the application code. It is entirely possible (and unfortunately, all too common) that an application will read from
or write to an invalid memory address. Placing each Windows process in a separate address space enhances robustness:
One process cannot adversely affect another process.

However, by verifying the managed code, we know that the code does not improperly access memory and cannot
adversely affect another application’s code. This means that we can run multiple managed applications in a single
Windows virtual address space.

Because Windows processes require a lot of operating system resources, launching many processes can hurt performance
and limit available OS resources. Running multiple applications in a single OS process reduces the number of processes,
which can improve performance, require fewer resources, and offer equivalent robustness. This is another benefit of
managed code as compared to unmanaged code.

The CLR does, in fact, offer the ability to execute multiple managed applications in a single OS process. Each managed
application is called an AppDomain. By default, every managed EXE will run in its own separate address space that has

Administrator
While compiling IL into native CPU instructions,

Administrator
verification.

Administrator
examines the high-level IL code

Administrator
everything it does is “safe.”

Administrator
Safe code is code that is

Administrator
verifiably safe.

Administrator
unsafe

Administrator
you can produce code that cannot be verifiably safe.

Administrator
PEVerify.exe

Administrator
with the .NET Framework SDK.

Administrator
administrator can elect to turn verification off

Administrator
verification off,

Administrator
JIT compiler will compile unverifiable IL into

Administrator
native CPU

Administrator
Running multiple applications in a single OS process reduces the number of processes,
require fewer resources, and offer equivalent robustness. This is another benefit of

Administrator

Administrator

Administrator

Administrator
another benefit

Administrator
managed code

Administrator
we can run multiple managed applications in a single

Administrator
Windows virtual address space.

Administrator
The CLR does, in fact, offer the ability to execute multiple managed applications

Administrator
single OS process.

Administrator
AppDomain.

Applied .NET Framework Programming

 14

just the one AppDomain. However, a process hosting the CLR (such as IIS or a future version of SQL Server) can decide
to run AppDomains in a single OS process.

The .NET Framework Class Library
Included with the .NET Framework is a set of Framework Class Library (FCL) assemblies that contains several thousand
type definitions, where each type exposes some functionality. All in all, the CLR and the FCL allow developers to build the
following kinds of applications:

• Web Services. Components that can be accessed over the Internet very easily. Web services are, of course,
the main thrust of Microsoft's .NET initiative.

• Web Forms. HTML-based applications (web sites). Typically, web form applications make database
queries and web service calls, combine and filter the returned information, and then present that
information in a browser using a rich HTML-based UI. Web forms provide a Visual Basic 6- and InterDev-
like development environment for web applications written in any CLR language.

• Windows Forms. Rich Windows GUI applications. Instead of using a web form to create your
application's UI, you can use the more powerful, higher-performance functionality offered by the
Windows desktop. Windows form applications can take advantage of controls, menus, mouse and
keyboard events, and can talk directly to the underlying operating system. Like web form applications,
Windows form applications make database queries and call web services. Windows Forms provides a
Visual Basic 6-like development environment for GUI applications written in any CLR language.

• Windows Console Applications. For applications with very simple UI demands, a console application
provides a quick and easy solution. Compilers, utilities, and tools are typically implemented as console
applications.

• Windows Services. Yes, it is possible to build service applications controllable via the Windows Service
Control Manager (SCM) using the .NET Framework.

• Component Library. Of course, the .NET Framework allows you to build stand-alone components
(types) that may be easily incorporated into any of the above mentioned application types.

Since the FCL contains literally thousands of types, a set of related types is presented to the developer within a single
namespace. For example, the System namespace (which you should become most familiar with) contains the Object
base type, from which all other types ultimately derive. In addition, the System namespace contains types for integers,
characters, strings, exception handling, and console I/O, as well as a bunch of utility types that convert safely between
data types, format data types, generate random numbers, and perform various math functions. All applications use types
from the System namespace.

To access any platform feature, you need to know which namespace contains the types that expose the facility you're
after. If you want to customize the behavior of any type, you can simply derive your own type from the desired FCL type.
The .NET Framework relies on the object-oriented nature of the platform to present a consistent programming paradigm
to software developers. It also enables developers to create their own namespaces containing their own types, which
merge seamlessly into the programming paradigm. Compared to Win32 programming paradigms, this greatly simplifies
software development.

Most of the namespaces in the FCL present types that you can use for any kind of application. The table below lists some
of the more general namespaces, with a brief description of what the types in that namespace are used for:

Administrator
Web Services.

Administrator
Web Forms.

Administrator
Windows Forms.

Administrator
Windows Console Applications.

Administrator
Windows Services.

Administrator
Component Library.

Administrator
FCL contains literally thousands of types,

Administrator
The .NET Framework Class Library

Architecture of the .NET Framework

15

Namespace Purpose of Types
System All the basic types used by every application.
System.Collections Managing collections of objects. Includes the popular collection types such as

Stacks, Queues, Hashtables, and so on.
System.Diagnostics Instrumenting and debugging your application.
System.Drawing Manipulating 2D graphics. Typically used for Windows Forms applications and

for creating images that are to appear in a web form.
System.EnterpriseServices Managing transactions, queued components, object pooling, just-in-time

activation, security, and other features to make the use of managed code more
efficient on the server.

System.Globalization National Language Support (NLS), such as string compares, formatting,
and calendars.

System.IO Doing stream I/O, walking directories and files.
System.Management Managing other computers in the enterprise via WMI.
System.Net Network communications.
System.Reflection Inspecting metadata and late binding to types and their members.
System.Resources Manipulating external data resources.
System.Runtime.InteropServices Enabling managed code to access unmanaged OS platform facilities, such as

COM components and functions in Win32 DLLs.
System.Runtime.Remoting Accessing types remotely.
System.Runtime.Serialization Enabling instances of objects to be persisted and regenerated from a stream.
System.Security Protecting data and resources.
System.Text Working with text in different encodings, like ASCII or Unicode.
System.Threading Performing asynchronous operations and synchronizing access to resources.
System.Xml Processing XML schemas and data.

This book is about the CLR and about the general types that interact closely with the CLR (which would include most of
the namespaces listed above). This means that the content of this book is applicable to all .NET Framework
programmers regardless of the type of application they're building.

You should be aware, however, that in addition to supplying the more general namespaces, the FCL offers namespaces
whose types are used for building specific application types. The table below lists some of the application-specific
namespaces:

Namespace Purpose of Types
System.Web.Services Building web services.
System.Web.UI Building web forms.
System.Windows.Forms Building Windows GUI applications.
System.ServiceProcess Building a Windows service controllable by the Service Control Manager.

I expect many good books will be published that explain how to build specific application types (such as Windows
services, web forms, or Windows forms). These books will give you an excellent start at building your application. I tend
to think of these application-specific books as helping you learn from the top down because they concentrate on the
application type and not on the development platform. It is my intent that this book offer information that will help you
learn from the bottom up. The two types of books should complement each other: After reading this book and an

Administrator
Namespace

Administrator
Purpose of Types

Administrator
System.Net

Administrator
Network communications.

Administrator
System.Reflection

Administrator
Inspecting metadata

Administrator
binding

Administrator
types

Administrator
members.

Administrator
System.Xml

Administrator
Processing XML schemas and data.

Administrator
Namespace

Administrator
Purpose of Types

Applied .NET Framework Programming

 16

application-specific book, you should be able to easily and proficiently build any kind of .NET Framework application
you desire.

The Common Type System
By now, it should be obvious to you that the CLR is all about types. Types expose functionality to your applications and
components. Types are the mechanism by which code written in one programming language can talk to code written in
a different programming language. Because types are at the root of the CLR, Microsoft created a formal specification –
the common type system (CTS)—that describes how types are defined and behave.

The CTS specification states that a type may contain zero or more members. In Chapter 7, “Type Member Accessibility,”
I'll discuss all these members in great detail. For now, I just want to give you a brief introduction to them:

• Field. A data variable that is part of the object’s state. Fields are identified by their name and type.

• Method. A function that performs an operation on the object, often changing the object’s state. Methods
have a name, signature, and modifiers. The signature specifies the calling convention, number of
parameters (and their sequence), the types of the parameters, and the type of value returned by the
method.

• Property. To the caller, this member looks like a field. But to the type implementer, this member looks
like a method (or two). Properties allow an implementer to validate input parameters and object state
before accessing the value and to calculate a value only when necessary; they also allow a user of the type
to have simplified syntax. Finally, properties also allow you to create read-only or write-only “fields.”

• Event. A notification mechanism between an object and other interested objects. For example, a button
could offer an event that notifies other objects when the button is clicked.

The CTS also specifies the rules for type visibility and for access to the members of a type. For example, marking a type as
public exports the type, making it visible and accessible to any assembly. On the other hand, marking a type as
assembly (called internal in C#) makes the type visible and accessible to code within the same assembly
only. Thus, the CTS establishes the rules by which assemblies form a boundary of visibility for a type, and the runtime
enforces the visibility rules.

Regardless of whether a type is visible to a caller, the type gets to control whether the caller has access to its members.
The following list shows the valid options for controlling access to a method or field:

• Private. Callable only by other methods in the same class type.

• Family. Callable by derived types, regardless of whether they are within the same assembly. Note that
many languages (like C++ and C#) refer to family as protected.

• Family and Assembly. Callable by derived types, but only if the derived type is defined in the same
assembly.

• Assembly. Callable by any code in the same assembly. Note that many languages refer to
assembly as internal.

• Family or Assembly. Callable by derived types in any assembly and by any types in the same
assembly. Note that C# refers to family or assembly as protected internal.

Administrator
Field.

Administrator
Method.

Administrator
Property.

Administrator
Event. A

Administrator
The CTS specification states that a type may contain zero or more members.

Administrator
CTS also specifies the rules

Administrator
visibility

Administrator
access

Administrator
Private.

Administrator
Family.

Administrator
Assembly.

Administrator
The Common Type System

Architecture of the .NET Framework

17

• Public. Callable by any code in any assembly.

In addition, the CTS defines the rules governing type inheritance, virtual functions, object lifetime, and so on. These
rules have been designed to accommodate the semantics expressible in modern programming languages. In fact, you
won’t even need to learn the CTS rules, per se, because the language you use exposes its own language syntax and type
rules in the same way you are familiar with today; it maps the language-specific syntax into the "language" of the CLR
when it emits the managed module.

When I first started working with the CLR, I soon realized that it is best to think of the language and the behavior of your
code as two separate and distinct things. Using C++, you can define your own types with their own members. Of course,
you could have used C# or Visual Basic.NET to define the same type with the same members. Sure, the syntax you use for
defining this type is different depending on the language you choose, but the behavior of the type will be absolutely
identical regardless of the language because the CLR—by means of the CTS—defines the behavior of the type.

To help make this clear, let me give you an example: The CTS supports single inheritance only. The C++ language
supports types that inherit from multiple base types; nevertheless, the CTS cannot accept and operate on any such type.
To help you, the Visual C++ compiler reports an error if it detects that you’re attempting to create managed code that
includes a type inherited from multiple base types.

Here’s another CTS rule: All types must (ultimately) inherit from a predefined type, System.Object. As you can
see, Object is the name of a type defined in the System namespace. This Object is the root of all other types
and therefore guarantees every type instance has a minimum set of behaviors. Specifically, the System.Object
type allows you to:

• compare two instances for equality

• obtain a hash code for the instance

• query the true type of an instance

• perform a shallow (bitwise) copy of the instance

• obtain a string representation of the instance's object’s current state

The Common Language Specification
COM allows objects created in different languages to communicate with one another. The CLR goes further. It integrates
all languages to let objects created in one language be treated as equal citizens by code written in a completely different
language. To make this possible, the CLR defines a standard behavior for types, embeds self-describing type information
(metadata), and provides a common execution environment.

Language integration is a fantastic goal, of course, but the truth of the matter is that programming languages are very
different from one another. For example, some languages lack features commonly used in other languages:

• case-sensitivity

• unsigned integers

• operator overloading

• methods that support a variable number of parameters

Administrator
Public.

Administrator
The Common Language Specification

Applied .NET Framework Programming

 18

If you intend to create types that are easily accessible from other programming languages, then it is important that you
use only features of your programming language that are guaranteed to be available in all other languages. To help you
with this, Microsoft has defined a common language specification (CLS) that details for compiler vendors the
minimum set of features that their compilers must support if they are to target the runtime.

Note that the CLR/CTS supports a lot more features than the subset defined by the common language specification, so if
you don’t care about language interoperability, you can develop very rich types limited only by the capabilities of the
language. Specifically, the CTS defines rules to which externally visible types and methods must adhere if they are to be
accessible from any CLR-compliant programming language. Note that the CLS rules do not apply to code that is only
accessible within the defining assembly. The figure below summarizes the way in which language features overlap with
the CLS, within the wider context of the CLR/CTS.

As this figure shows, the CLR/CTS offers a broadly inclusive set of features. Some languages expose a large subset of the
CLR/CTS; in fact, A programmer willing to write in IL assembly language is able to use all the features offered by the
CLR/CTS. Most other languages—such as C#, VB, and Fortran—expose a subset of the CLR/CTS features to the
programmer. The CLS defines a minimum set of features that all languages must support.

If you are designing a type in one language and you expect that type to be used by another language, then you should
not take advantage of any features that are outside of the CLS. Doing so means that your type members might not be
accessible by programmers writing code in other programming languages.

In the code below, a CLS-compliant type is being defined in C#. However, the type has a few non-CLS-compliant
constructs that cause the C# compiler to complain about the code:

using System;

// Tell compiler to check for CLS Compliance
[assembly:CLSCompliant(true)]

// Errors appear because the class is public
public class App {

 // Error: Return type of 'App.Abc()' is not CLS-compliant

Administrator

Architecture of the .NET Framework

19

 public UInt32 Abc() { return 0; }

 // Error: Identifier 'App.abc()' differing
 // only in case is not CLS-compliant
 public void abc() { }

 // No error: Method is private
 private UInt32 ABC() { return 0; }
}

In the code above, the [assembly:CLSCompliant(true)] attribute is applied to the assembly. This
attribute tells the compiler to ensure that any publicly exposed type has no construct that would prevent the type from
being accessed from any other programming language. When the code above is compiled, the C# compiler emits two
errors. The first error is reported because the method Abc returns an unsigned integer; Visual Basic.NET and some
other languages cannot manipulate unsigned integer values. The second error arises because this type exposes two
public methods which differ only by case: Abc and abc. Visual Basic.NET and some other languages cannot call both
of these methods.

Note that if you were to delete public from in front of class App and recompile, both errors would go away.
The reason is that the App type would default to internal and would therefore no longer be exposed outside the
assembly. For a complete list of CLS rules, refer to the "Cross-Language Interoperability" section in the .NET Framework
SDK documentation.

Let me distill the CLS rules to something very simple. In the CLR, every member of a type is either a field (data) or a
method (behavior). This means that every programming language must be able to access fields and call methods.
Certain fields and certain methods are used in special and common ways. To make coding these common programming
patterns easier, languages typically offer additional abstractions. For example, languages expose concepts such as
enums, arrays, properties, indexers, delegates, events, constructors, destructors, operator overloads, and conversion
operators. When compilers come across any of these constructs in your source code, the compiler must translate them
into fields and methods so that the CLR (and any other programming language) can access the construct.

Consider the following type definition that contains a constructor, a destructor, some overloaded operators, a property,
an indexer, and an event. Note that additional code is introduced to make the code compile; the code does not illustrate
the correct way to implement a type.

using System;

class Test {
 // Constructor
 public Test() {}

 // Destructor
 ~Test() {}

 // Operator overload
 public static Boolean operator == (Test t1, Test t2) {
 return true;
 }
 public static Boolean operator != (Test t1, Test t2) {
 return false;
 }

Applied .NET Framework Programming

 20

 // An operator overload
 public static Test operator + (Test t1, Test t2) { return null; }

 // A Property
 public String AProperty {
 get { return null; }
 set { }
 }

 // An Indexer
 public String this[Int32 x] {
 get { return null; }
 set { }
 }

 // An Event
 event EventHandler AnEvent;
}

When the compiler compiles this code, the result is a type that has a number of fields and methods defined in it. You can
easily see this using the IL disassembler tool (ILDasm.exe) provided with the .NET Framework SDK to examine the
resulting managed module:

The table on the next page shows how the programming language constructs got mapped to the equivalent CLR fields
and methods:

Architecture of the .NET Framework

21

Type Member Member
Type

Equivalent Programming
Language Construct

AnEvent Field Event. The name of the field is AnEvent and its type is
System.EventHandler

.ctor Method Constructor
Finalize Method Destructor
add_AnEvent Method Event add accessor method
get_AProperty Method Property get accessor method
get_Item Method Indexer get accessor method
op_Addition Method + operator
op_Equality Method == operator
op_Inequality Method != operator
remove_AnEvent Method Event remove accessor method
set_AProperty Method Property set accessor method
set_Item Method Indexer set accessor method

The additional nodes under the Test type that are not mentioned in the table above—.class, .custom, AnEvent,
AProperty, and Item—identify additional metadata about the type. These nodes do not map to fields or methods; they
just offer some additional information about the type that the CLR, programming languages, or tools can get access to.
For example, a tool can see that the Test type offers an event, called AnEvent, which is exposed via the two
methods (add_AnEvent and remove_AnEvent).

Interoperability with Unmanaged Code
The .NET Framework offers a ton of advantages over other development platforms. However, very few companies can
afford to redesign and re-implement all their existing code. Microsoft realizes this and has built the CLR so that it offers
mechanisms that allow an application to consist of both managed and unmanaged parts. Specifically, the CLR supports
three interoperability scenarios:

• Managed code can call an unmanaged function in a DLL. Managed code can easily call
functions contained in DLLs using a mechanism called P/Invoke (for Platform Invoke). After all, many
of the types defined in the FCL internally call functions exported from Kernel32.dll, User32.dll, and so on.
Many programming languages will expose a mechanism that makes it easy for managed code to call out
to unmanaged functions contained in DLLs.
Example: A C# or VB application can call the CreateSemaphore function exported from Kernel32.dll.

• Managed code can use an existing COM component (server). Many companies have already
implemented a number of unmanaged COM components. Using the type library from these components,
a managed assembly can be created that describes the COM component. Managed code can access the
type in the managed assembly just like any other managed type. See the TlbImp.exe tool that ships with
the .NET Framework SDK for more information. If you do not have a type library or you want to have
more control over what TlbImp.exe produces, you can manually build a type in source code that the CLR
can use for doing the proper interop.
Example: Using DirectX COM components from a C# or VB application.

Applied .NET Framework Programming

 22

• Unmanaged code can use a managed type (server). A lot of existing unmanaged code requires
that you supply a COM component for the code to work correctly. You can implement these components
easily using managed code, avoiding all the code that has to do with reference counting and interfaces.
See the TlbExp.exe and RegAsm.exe tools that ship with the .NET Framework SDK for more information.
Example: Creating an ActiveX control or a shell extension in C# or VB.

In addition to the above, the Microsoft Visual C++ compiler (version 13) supports a new /clr command-line switch. This
switch tells the compiler to emit IL code instead of native x86 instructions. If you have a large amount of existing C++
code, you can recompile the code using this new compiler switch. The new code will require the CLR to execute, and you
can modify the code over time to take advantage of the CLR-specific features.

Note that the /clr switch cannot compile to IL any method that does one of the following:

• contains inline assembly language (via the __asm keyword),

• accepts a variable number of arguments,

• calls setjmp,

• contains intrinsic routines (such as __enable, __disable, _ReturnAddress, and
_AddressOfReturnAddress).

For a complete list of the constructs that the C++ compiler cannot compile into IL, see the documentation for the Visual
C++ compiler. When the compiler can’t compile the method into IL, it compiles the method into x86 so that the
application still runs.

Note further that although the IL code produced is managed, the data is not managed. That is, data objects are not
allocated from the managed heap, and they are not garbage collected. In fact, the data types do not have metadata
produced for them and the type method names are mangled.

The C code below calls the standard C runtime library printf function and also calls the WriteLine method
in System.Console. Note that the System.Console type is defined in the Framework Class Library.
Accordingly, C/C++ code can use libraries available to C/C++ as well as managed types.

#include <stdio.h> // For printf

#using <mscorlib.dll> // For managed types defined in this assembly
using namespace System; // Easily access System namespace types

// Implement a normal C/C++ main function
void main () {

 // Call the C-Runtime library's printf function
 printf("Displayed by printf.\r\n");

 // Call System.Console's WriteLine method
 Console::WriteLine("Displayed by Console::WriteLine.");
}

Compiling this code couldn't be easier. If the code above were placed in a Test.cpp file, you'd compile it by executing the
following line at the command prompt:

cl /clr Test.cpp

Architecture of the .NET Framework

23

The result is a Test.exe assembly file. If you run Test.exe, you'll see the following output:

C:\>Test
Displayed by printf.
Displayed by Console::WriteLine.

If you use ILDasm to examine this file, you’ll see the following:

Here, ILDasm shows all the global functions and global fields defined within the assembly. Obviously, the compiler has
generated a lot of stuff automatically. If you double-click the Main method, ILDasm will show you the IL code:

.method public static int32
 modopt([mscorlib]System.Runtime.CompilerServices.CallConvCdecl)
 main() cil managed
{
 .vtentry 1 : 1
 // Code size 28 (0x1c)
 .maxstack 1
 IL_0000: ldsflda valuetype
 $ArrayType$0x0faed885 '?A0x44d29f64.unnamed-global-0'
 IL_0005: call vararg int32
 modopt([mscorlib]System.Runtime.CompilerServices.CallConvCdecl)
 printf(int8
 modopt([Microsoft.VisualC]Microsoft.VisualC.NoSignSpecifiedModifier)
 modopt([Microsoft.VisualC]Microsoft.VisualC.IsConstModifier)*)
 IL_000a: pop
 IL_000b: ldsflda valuetype
 $ArrayType$0x0e6cb2b2 '?A0x44d29f64.unnamed-global-1'
 IL_0010: newobj instance void [mscorlib]System.String::.ctor(int8*)
 IL_0015: call void [mscorlib]System.Console::WriteLine(string)
 IL_001a: ldc.i4.0

Applied .NET Framework Programming

 24

 IL_001b: ret
} // end of method 'Global Functions'::main

What we see here isn’t pretty because the compiler generates a lot of special code to make all this work. You can see,
however, that the IL above makes calls to both printf and the WriteLine method in Console.

Architecture of the .NET Framework

25

