
23

Understanding the .NET
Remoting Architecture

In Chapter 1, “Understanding Distributed Application Development,” we took a
tour of the distributed application development universe, noting various archi-
tectures, benefits, and challenges. This chapter will focus on the .NET Remoting
architecture, introducing you to the various entities and concepts that you’ll use
when developing distributed applications with .NET Remoting. A thorough
understanding of the concepts discussed in this chapter is critical to understand-
ing the rest of this book. Throughout the chapter, we’ll include some brief code
snippets to give you a taste of the programmatic elements defined by the .NET
Remoting infrastructure, but we’ll defer discussing full-blown implementation
details until Chapter 3, “Building Distributed Applications with .NET Remoting.”
If you’re already familiar with the .NET Remoting architecture, feel free to skim
through this chapter and skip ahead to Chapter 3.

Remoting Boundaries
In the unmanaged world, the Microsoft Windows operating system segregates
applications into separate processes. In essence, the process forms a boundary
around application code and data. All data and memory addresses are process
relative, and code executing in one process can’t access memory in another
process without using some sort of interprocess communication (IPC) mecha-
nism. One benefit of this address isolation is a more fault-tolerant environment
because a fault occurring in one process doesn’t affect other processes. Address
isolation also prevents code in one process from directly manipulating data in
another process.

C02617783.fm Page 23 Wednesday, August 14, 2002 3:45 PM

Alef Zero
Understanding the .NET
Remoting Architecture

Alef Zero
Remoting

Alef Zero
NET

Alef Zero
Remoting Boundaries

Alef Zero
In the unmanaged world,

Alef Zero
operating system segregates

Alef Zero
applications into separate processes.

Alef Zero

Alef Zero
IPC)

Alef Zero
Address

Alef Zero
isolation

Alef Zero
prevents code in one process from directly manipulating

Alef Zero

24 Microsoft .NET Remoting

Because the common language runtime verifies managed code as type-
safe and verifies that the managed code does not access invalid memory loca-
tions, the runtime can run multiple applications within a single process and still
provide the same isolation benefits as the unmanaged application-per-process
model. The common language runtime defines two logical subdivisions for
.NET applications: the application domain and the context.

Application Domains
You can think of the application domain as a logical process. We say this
because it’s possible for a single Win32 process to contain more than one appli-
cation domain. Code and objects executing in one application domain can’t
directly access code and objects executing in another application domain. This
provides a level of protection because a fault occurring in one application
domain won’t affect other application domains within the process. The division
between application domains forms a .NET Remoting boundary.

Contexts
The common language runtime further subdivides an application domain into
contexts. A context guarantees that a common set of constraints and usage
semantics will govern all access to the objects within it. For example, a synchro-
nization context might allow only one thread to execute within the context at a
time. This means objects within the synchronization context don’t have to pro-
vide extra synchronization code to handle concurrency issues. Every application
domain contains at least one context, known as the default context. Unless an
object explicitly requires a specialized context, the runtime will create that
object in the default context. We’ll discuss the mechanics of contexts in detail in
Chapter 6, “Message Sinks and Contexts.” For now, realize that, as with applica-
tion domains, the division between contexts forms a .NET Remoting boundary.

Crossing the Boundaries
.NET Remoting enables objects executing within the logical subdivisions of
application domains and contexts to interact with one another across .NET
Remoting boundaries. A .NET Remoting boundary acts like a semipermeable
membrane: in some cases, it allows an instance of a type to pass through
unchanged; in other cases, the membrane allows an object instance outside the
application domain or context to interact with the contained instance only
through a well-defined protocol—or not at all.

C02617783.fm Page 24 Wednesday, August 14, 2002 3:45 PM

Alef Zero
Because the common language runtime verifies managed code as typesafe
and verifies that the managed code does not access invalid memory locations,
the runtime can run multiple applications within a single process and still
provide the same isolation benefits as the unmanaged application-per-process
model. The common language runtime defines two logical subdivisions for
.NET applications: the application domain and the context.

Alef Zero

Alef Zero
common language runtime

Alef Zero
managed code as typesafe

Alef Zero
verifies that the managed code does not access invalid memory locations,

Alef Zero
the runtime can run multiple applications within a single process

Alef Zero
still

Alef Zero
provide the same isolation benefits

Alef Zero
two logical subdivisions

Alef Zero
application domain

Alef Zero
context.

Alef Zero

Alef Zero

Alef Zero

Alef Zero
Application Domains

Alef Zero
You can think of the application domain

Alef Zero
logical process.

Alef Zero
application

Alef Zero
domain

Alef Zero
logical

Alef Zero
process.

Alef Zero
context.

Alef Zero
application

Alef Zero
domain

Alef Zero
Code

Alef Zero
objects

Alef Zero
executing in one application domain

Alef Zero
can’t

Alef Zero
directly

Alef Zero
access

Alef Zero
code

Alef Zero
objects

Alef Zero
in another application domain.

Alef Zero
level of protection

Alef Zero
Contexts

Alef Zero
common language runtime

Alef Zero
subdivides

Alef Zero
subdivides

Alef Zero
an application domain

Alef Zero
into

Alef Zero
contexts.

Alef Zero
usage

Alef Zero
semantics

Alef Zero
will govern all access to the objects within it.

Alef Zero
context

Alef Zero
guarantees

Alef Zero
common

Alef Zero
set

Alef Zero
constraints

Alef Zero
usage

Alef Zero
semantics

Alef Zero
constraints

Alef Zero

Alef Zero

Alef Zero

Alef Zero
default context.

Alef Zero
division between contexts forms a .NET Remoting boundary.

Alef Zero
Crossing the Boundaries

Alef Zero
contexts

Alef Zero
enables objects

Alef Zero
within the logical subdivisions of

Alef Zero
application domains

Alef Zero

Alef Zero

Alef Zero
interact with one another across .NET

Alef Zero
Remoting boundaries.

Alef Zero

Alef Zero

Alef Zero

Alef Zero
well-defined protocol

Chapter 2 Understanding the .NET Remoting Architecture 25

The .NET Remoting infrastructure splits objects into two categories: non-
remotable and remotable. A type is remotable if—and only if—at least one of
the following conditions holds true:

■ Instances of the type can cross .NET Remoting boundaries.

■ Other objects can access instances of the type across .NET Remoting
boundaries.

Conversely, if a type doesn’t exhibit either of these qualities, that type is
nonremotable.

Nonremotable Types
Not every type is remotable. Instances of a nonremotable type can’t cross a
.NET Remoting boundary, period. If you attempt to pass an instance of a non-
remotable type to another application domain or context, the .NET Remoting
infrastructure will throw an exception. Furthermore, object instances residing
outside an application domain or a context containing an object instance of a
nonremotable type can’t directly access that instance.

Remotable Types
Depending on its category, a remotable type can pass through .NET Remoting
boundaries or be accessed over .NET Remoting boundaries. .NET Remoting
defines three categories of remotable types: marshal-by-value, marshal-by-ref-
erence, and context-bound.

Marshal-by-Value Instances of marshal-by-value types can cross .NET Remot-
ing boundaries through a process known as serialization. Serialization is the act
of encoding the present state of an object into a sequence of bits. Once the
object has been serialized, the .NET Remoting infrastructure transfers the
sequence of bits across .NET Remoting boundaries into another application
domain or context where the infrastructure then deserializes the sequence of
bits into an instance of the type containing an exact copy of the state. In .NET,
a type is serializable if it is declared by using the Serializable attribute. The fol-
lowing code snippet declares a class that’s made serializable by using the Seri-
alizable attribute:

[Serializable]
class SomeSerializableClass
{

§
}

In addition, a Serializable-attributed type can implement the ISerializable
interface to perform custom serialization. We’ll discuss serialization in detail in

C02617783.fm Page 25 Wednesday, August 14, 2002 3:45 PM

Alef Zero
The .NET Remoting infrastructure splits objects into two categories: nonremotable
and remotable. A type is remotable if—and only if—at least one of
the following conditions holds true:
■ Instances of the type can cross .NET Remoting boundaries.
■ Other objects can access instances of the type across .NET Remoting
boundaries.

Alef Zero
nonremotable

Alef Zero
remotable.

Alef Zero
Instances of the type can cross

Alef Zero
Other objects can access instances of the type across

Alef Zero
nonremotable.
Nonremotable Types
Not every type is remotable.

Alef Zero
exception.

Alef Zero
nonremotable type can’t directly
Remotable Types
Depending on its category,

Alef Zero

Alef Zero
NET Remoting

Alef Zero
defines

Alef Zero
marshal-by-value,

Alef Zero
marshal-by-reference,

Alef Zero
context-bound.

Alef Zero
three categories of remotable types:

Alef Zero

Alef Zero

Alef Zero

Alef Zero
Marshal-by-Value

Alef Zero
marshal-by-value

Alef Zero
as serialization.

Alef Zero
NET Remoting infrastructure transfers

Alef Zero
sequence of bits across .NET Remoting boundaries

Alef Zero
another application

Alef Zero
domain

Alef Zero
context

Alef Zero
deserializes

Alef Zero
deserializes

Alef Zero
serialized,

Alef Zero
into an instance of the type containing

Alef Zero
exact copy of the state.

Alef Zero

Alef Zero
[Serializable]
class SomeSerializableClass
{
§
}

Alef Zero

Alef Zero
Serializable-attributed type can implement the ISerializable

Alef Zero
to perform custom serialization.

Alef Zero

26 Microsoft .NET Remoting

Chapter 8. Figure 2-1 shows the serialization and deserialization of an object
instance from one application domain to another application domain.

F02wn01Figure 2-1 Marshal-by-value: object instance serialized from one appli-
cation domain to another

Marshal-by-Reference Marshal-by-value is fine for some circumstances, but
sometimes you want to create an instance of a type in an application domain
and know that all access to such an object will occur on the object instance in
that application domain rather than on a copy of it in another application
domain. For example, an object instance might require resources that are avail-
able only to object instances executing on a specific machine. In this case, we
refer to such types as marshal-by-reference, because the .NET Remoting infra-
structure marshals a reference to the object instance rather than serializing a
copy of the object instance. To define a marshal-by-reference type, the .NET

��������
	
��
�������������

�������
�����
�����
��������

����

�������
�����
�����
��������

����������	
�����	

 �!�������������
	
��
�������������

����������	
�����	
�

"�
������#�$

%����
������������
������#�$���������

%����
������������
������#�$���������

%������#�$����
����

C02617783.fm Page 26 Wednesday, August 14, 2002 3:45 PM

Alef Zero
instance from one application domain to another application domain.
F02wn01 Figure 2-1 Marshal-by-value: object instance serialized from one application
domain to another
��������
	
��
�������������
���˘�ˇ�
ˆ�˙˝˛
˙˝˚��
��������
˜˙��
���˘�ˇ�
ˆ�˙˝˛
˙˝˚��
��������
����������	
�����	

 ˆ!��ˆ˚�ˆ�������
	
��
�������������
����������	
�����	
�
"�
��˙��˙#�$
%����
��ˆ˝��˙˝˙˝˛�
��˙��˙#�$�ˆ�������
%����
��ˆ˝��˙˝˙˝˛�
��˙��˙#�$�ˆ�������
%��˙��˙#�$��ˆ�
����

Alef Zero

Alef Zero

Alef Zero

Alef Zero

Alef Zero
�

Alef Zero
�

Alef Zero
�

Alef Zero
�

Alef Zero
�

Alef Zero
�

Alef Zero

Alef Zero
create an instance

Alef Zero
in an application domain

Alef Zero
access to such an object will occur on the object instance

Alef Zero
that application domain

Alef Zero
Marshal-by-Reference

Chapter 2 Understanding the .NET Remoting Architecture 27

Framework requires that you derive from System.MarshalByRefObject. Simply
deriving from this class enables instances of the type to be remotely accessible.
The following code snippet shows an example of a marshal-by-reference type:

class SomeMBRType : MarshalByRefObject
{

§
}

Figure 2-2 shows how a marshal-by-reference remote object instance
remains in its “home” application domain and interacts with object instances
outside the home application domain through the .NET Remoting infrastructure.

F02wn02Figure 2-2 Marshal-by-reference: object instance remains in its home
application domain

Context-Bound A further refinement of marshal-by-reference is the context-
bound type. Deriving a type from System.ContextBoundObject will restrict
instances of such a type to remaining within a specific context. Objects external
to the containing context can’t directly access ContextBoundObject types, even

�������&

�������
�����
�����
��������

����������	
�����	

��������

'�$������������

�
��������
����!!���������$�
����(

"������������

�

�������
�����
�����
��������

�������
	
��
�����������������

����������	
�����	
�

C02617783.fm Page 27 Wednesday, August 14, 2002 3:45 PM

Alef Zero
Framework requires that you derive

Alef Zero
System.MarshalByRefObject.

Alef Zero
class SomeMBRType : MarshalByRefObject
{
§
}

Alef Zero

Alef Zero

Alef Zero
F02wn02 Figure 2-2 Marshal-by-reference: object instance remains in its home
application domain
�������&
���˘�ˇ�
ˆ�˙˝˛
˙˝˚��
��������
����������	
�����	

��������
'˝$˙�����������

�
�ˆ������
˙˝��!!�˙���˙ˆ˝�$ˆ
�˙˝�(
"˙�����������

�

���˘�ˇ�
ˆ�˙˝˛
˙˝˚��
��������
�������
	
��
���������˚���˝���
����������	
�����	
�

Alef Zero
"˙�����������

�

Alef Zero
˝$˙�����������

�
�ˆ������
˙˝��!!�˙���˙ˆ˝�$ˆ
�˙˝�(

Alef Zero
����	
�

Alef Zero
�����	

Alef Zero

Alef Zero

Alef Zero
�����˚���˝��

Alef Zero
Context-Bound

Alef Zero
further refinement of marshal-by-reference

Alef Zero
contextbound

Alef Zero
type.

Alef Zero
Deriving a type from

Alef Zero
System.ContextBoundObject

Alef Zero
to remaining within a specific context.

Alef Zero
external

Alef Zero
to the containing context can’t directly access

Alef Zero
ContextBoundObject

Alef Zero
types,

Alef Zero

28 Microsoft .NET Remoting

if the other objects are within the same application domain. We’ll discuss con-
text-bound types in detail in Chapter 6, “Message Sinks and Contexts.” The fol-
lowing code snippet declares a context-bound type:

class SomeContextBoundType : ContextBoundObject
{

§
}

Figure 2-3 shows the interactions between a Context-Bound object and
other objects outside its context.

F02wn03Figure 2-3 Context-bound: remote objects bound to a context interact
with objects outside the context through the .NET Remoting infrastructure

Object Activation
Before an object instance of a remotable type can be accessed, it must be cre-
ated and initialized by a process known as activation. In .NET Remoting, mar-
shal-by-reference types support two categories of activation: server activation

�������&

�������
�����
�����
��������

��	����

��������

'�$������������

�
�������� ���������)��(

"������������

�

�������
�����
�����
��������

�������
	�����)������$�

��	����
�

����������	
�����	

C02617783.fm Page 28 Wednesday, August 14, 2002 3:45 PM

Alef Zero
if the other objects are within the same application domain.

Alef Zero
within the same application domain.

Alef Zero
class SomeContextBoundType : ContextBoundObject
{
§
}

Alef Zero
F02wn03 Figure 2-3 Context-bound: remote objects bound to a context interact
with objects outside the context through the .NET Remoting infrastructure
�������&
���˘�ˇ�
ˆ�˙˝˛
˙˝˚��
��������
��	����

��������
'˝$˙�����������

�
�ˆ������ �˙˝��ˆ˝��)��(
"˙�����������

�

���˘�ˇ�
ˆ�˙˝˛
˙˝˚��
��������
�������
	�ˆ˝��)���ˆ�˝$�
��	����
�
����������	
�����	

Alef Zero
����������	
�����	

Alef Zero

Alef Zero

Alef Zero

Alef Zero
'˝$˙�����������

�
�ˆ������ �˙˝��ˆ˝��)��(

Alef Zero
"˙�����������

�

Alef Zero
Object Activation

Alef Zero
Before an object instance of a remotable type can be accessed,

Alef Zero
must be created

Alef Zero
initialized

Alef Zero
process known as activation.

Alef Zero

Alef Zero
two categories

Alef Zero
server

Alef Zero
activation

Alef Zero
server

Alef Zero
activation

Alef Zero

Alef Zero

Alef Zero

Alef Zero

Chapter 2 Understanding the .NET Remoting Architecture 29

and client activation. Marshal-by-value types require no special activation
mechanism because they’re copied via the serialization process and, in effect,
activated upon deserialization.

Note In .NET Remoting, a type’s activation is determined by the con-
figuration of the .NET Remoting infrastructure rather than by the type
itself. For example, you could have the same type configured as server
activated in one application and as client activated in another.

Server Activated
The .NET Remoting infrastructure refers to server-activated types as well-known
object types because the server application publishes the type at a well-known
Uniform Resource Identifier (URI) before activating object instances. The server
process hosting the remotable type is responsible for configuring the type as a
well-known object, publishing it at a specific well-known endpoint or address,
and activating instances of the type only when necessary. .NET Remoting cate-
gorizes server activation into two modes that offer differing activation seman-
tics: Singleton mode and SingleCall mode.

Singleton
No more than one instance of a Singleton-mode–configured type will be active
at any time. An instance is activated when first accessed by a client if no other
instance exists. While active, the Singleton instance will handle all subsequent
client access requests by either the same client or other clients. The Singleton
instance can maintain state between method calls.

The following code snippet shows the programmatic method of configur-
ing a remotable object type as a Singleton in a server application hosting that
remotable object type:

RemotingConfiguration.RegisterWellKnownServiceType(
typeof(SomeMBRType),
“SomeURI",
WellKnownObjectMode.Singleton);

This code snippet uses the System.Runtime.Remoting.RemotingConfigura-
tion class to register a type named SomeMBRType as a well-known object in
Singleton mode. The client must also configure SomeMBRType as a well-known
object in Singleton mode, as the following code snippet shows.

C02617783.fm Page 29 Wednesday, August 14, 2002 3:45 PM

Alef Zero

Alef Zero

Alef Zero
client

Alef Zero
activation.

Alef Zero
client

Alef Zero
activation.

Alef Zero
Marshal-by-value types require no special activation

Alef Zero
mechanism

Alef Zero
Server Activated

Alef Zero
NET Remoting infrastructure

Alef Zero
to server-activated types

Alef Zero
refers

Alef Zero
well-known

Alef Zero
object

Alef Zero

Alef Zero

Alef Zero
URI)

Alef Zero
activating object instances.

Alef Zero
before

Alef Zero
NET Remoting categorizes

Alef Zero
two modes

Alef Zero
Singleton mode

Alef Zero
SingleCall mode.

Alef Zero
Singleton

Alef Zero
RemotingConfiguration.RegisterWellKnownServiceType(
typeof(SomeMBRType),
“SomeURI",
WellKnownObjectMode.Singleton);

Alef Zero
The client must also configure

Alef Zero
well-known

Alef Zero
object

Alef Zero
Singleton mode,

Alef Zero

30 Microsoft .NET Remoting

RemotingConfiguration.RegisterWellKnownClientType(
typeof(SomeMBRType),
“http://SomeWellKnownURL/SomeURI“);

Note .NET Remoting provides two mechanisms for configuring the
.NET Remoting infrastructure: programmatic files and configuration
files. We’ll look at each of these configuration alternatives in more
detail in Chapter 3.

Figure 2-4 shows how a Singleton-configured remotable object type han-
dles multiple client requests.

F02wn04Figure 2-4 Server-activated remote object in Singleton mode

�����*��+��������
%���������
�$�

����������	
�����	

�������
�����
�����
��������

�������,

����������	
�����	

�������
�����
�����
��������

�������(

����������	
�����	

�������
�����
�����
��������

�������-

&����������������
�����

����
�
����
��������

����%��������

C02617783.fm Page 30 Wednesday, August 14, 2002 3:45 PM

Alef Zero

Alef Zero
RemotingConfiguration.RegisterWellKnownClientType(
typeof(SomeMBRType),
“http://SomeWellKnownURL/SomeURI“);

Alef Zero
Singleton-configured

Alef Zero
object type

Alef Zero
handles
multiple client requests.

Alef Zero
F02wn04 Figure 2-4 Server-activated remote object in Singleton mode
˜����*˝ˆ+˝�ˆ�����
%˙˝˛���ˆ˝�
ˆ$�
����������	
�����	
���˘�ˇ�
ˆ�˙˝˛
˙˝˚��
��������
�������,
����������	
�����	
���˘�ˇ�
ˆ�˙˝˛
˙˝˚��
��������
�������(
����������	
�����	
���˘�ˇ�
ˆ�˙˝˛
˙˝˚��
��������
�������-
&�����˙�˝��ˆ�����
�����

����
�
��˙˝
��˝���ˆ˚
����%˙˝˛���ˆ˝

Alef Zero

Alef Zero
�����˙�˝��ˆ�����
�����

����
�
��˙˝
��˝���ˆ˚
����%˙˝˛���ˆ

Alef Zero
˜����*˝ˆ+˝�ˆ�����
%˙˝˛���ˆ˝�
ˆ$�

Chapter 2 Understanding the .NET Remoting Architecture 31

Caution The lifetime management system used by .NET Remoting
imposes a default lifetime on server-activated Singleton-configured
types. This implies that it’s possible for subsequent client access to
occur on various instances of a Singleton type. However, you can over-
ride the default lifetime to affect how long your Singleton-configured
type can live. In Chapter 3, we’ll look at overriding the default lifetime
for a Singleton-configured type.

SingleCall
To better support a stateless programming model, server activation supports a
second activation mode: SingleCall. When you configure a type as SingleCall,
the .NET Remoting infrastructure will activate a new instance of that type for
every method invocation a client makes. After the method invocation returns,
the .NET Remoting infrastructure makes the remote object instance available for
recycling on the next garbage collection. The following code snippet shows the
programmatic method of configuring a remotable object type as a SingleCall in
an application hosting that remotable object type:

RemotingConfiguration.RegisterWellKnownServiceType(
typeof(SomeMBRType),
“SomeURI",
WellKnownObjectMode.SingleCall);

Except for the last parameter, this code snippet is identical to the code
used for registering SomeMBRType as a Singleton. The client uses the same
method to configure SomeMBRType as a well-known object in SingleCall mode
as it used for the Singleton mode. Figure 2-5 shows a server-activated remote
object in SingleCall mode. The .NET Remoting infrastructure ensures that a new
remote object instance handles each method call request.

F02wn05Figure 2-5 Server-activated remote object in SingleCall mode

����������	
�����	

�������
�����
�����
��������

�����*��+��������
%����� ����
�$�

����������	
�����	

�������
�����
�����
��������

�����*��+��������
%����� ����
�$�

�������,

.����$������(

.����$������,

.����$������(
.����$������,

C02617783.fm Page 31 Wednesday, August 14, 2002 3:45 PM

Alef Zero
SingleCall

Alef Zero
To better support a stateless programming model,

Alef Zero
SingleCall.

Alef Zero
SingleCall.

Alef Zero
a new instance of that type for

Alef Zero
every method invocation a client makes.

Alef Zero
NET Remoting infrastructure

Alef Zero
activate

Alef Zero
new instance

Alef Zero
for

Alef Zero
every method invocation a client makes.

Alef Zero
recycling

Alef Zero
RemotingConfiguration.RegisterWellKnownServiceType(
typeof(SomeMBRType),
“SomeURI",
WellKnownObjectMode.SingleCall);

Alef Zero
The client uses the same

Alef Zero
method to configure SomeMBRType as a well-known object in SingleCall mode

Alef Zero
as it used for the Singleton mode.

Alef Zero
F02wn05 Figure 2-5 Server-activated remote object in SingleCall mode
����������	
�����	
���˘�ˇ�
ˆ�˙˝˛
˙˝˚��
��������
˜����*˝ˆ+˝�ˆ�����
%˙˝˛�� ����
ˆ$�
����������	
�����	
���˘�ˇ�
ˆ�˙˝˛
˙˝˚��
��������
˜����*˝ˆ+˝�ˆ�����
%˙˝˛�� ����
ˆ$�
�������,
.���ˆ$������(
.���ˆ$������,
.���ˆ$������(
.���ˆ$������,

Alef Zero
.���ˆ$������,

Alef Zero
.���ˆ$������,

Alef Zero
.���ˆ$������(

Alef Zero
.���ˆ$������(

Alef Zero

32 Microsoft .NET Remoting

Client Activated
Some scenarios require that each client reference to a remote object instance be
distinct. .NET Remoting provides client activation for this purpose. In contrast
to how it handles well-known server-activated types, the .NET Remoting infra-
structure assigns a URI to each instance of a client-activated type when it acti-
vates each object instance.

Instances of client-activated types can remain active between method calls
and participate in the same lifetime management scheme as the Singleton.
However, instead of a single instance of the type servicing all client requests,
each client reference maps to a separate instance of the remotable type.

The following code snippet shows the programmatic method of configur-
ing a remotable object type as client activated in an application hosting that
remotable object type:

RemotingConfiguration.RegisterActivatedServiceType(typeof(SomeMBRType));

The corresponding configuration code on the client application would look like
the following:

RemotingConfiguration.RegisterActivatedClientType(typeof(SomeMBRType),
"http://SomeURL”);

We’ll look at more detailed examples of configuring and using client-
activated objects in Chapter 3.

Note The RemotingConfiguration class’s methods for registering
remote objects follow two naming patterns:

■ RegisterXXXXClientType methods register remotable
object types that a client application wants to consume.

■ RegisterXXXXServiceType methods register remotable
object types that a server application wants to publish.

XXXX can be either WellKnown or Activated. WellKnown indi-
cates that the method registers a server-activated type; Activated indi-
cates that the method registers a client-activated type. We’ll look at the
RemotingConfiguration class in more detail in Chapter 3.

C02617783.fm Page 32 Wednesday, August 14, 2002 3:45 PM

Alef Zero
Client Activated

Alef Zero
each client reference to a remote object instance be

Alef Zero
distinct.

Alef Zero
client activation

Alef Zero
client

Alef Zero
activation

Alef Zero

Alef Zero
assigns a URI to each instance

Alef Zero
client-activated type

Alef Zero
it activates

Alef Zero
each

Alef Zero
object

Alef Zero
instance.

Alef Zero
NET Remoting infrastructure

Alef Zero
each instance

Alef Zero
Instances of client-activated types can remain active between method calls

Alef Zero
each client reference maps to a separate instance of the remotable type.

Alef Zero
separate

Alef Zero
each client reference

Alef Zero
types

Alef Zero
remain active between method calls

Alef Zero
in an application hosting

Alef Zero
on the client application

Alef Zero
remotable object type:
RemotingConfiguration.RegisterActivatedServiceType(typeof(SomeMBRType));
The corresponding configuration code on the client application would look like

Alef Zero
the following:
RemotingConfiguration.RegisterActivatedClientType(typeof(SomeMBRType),
"http://SomeURL”);

Alef Zero

Alef Zero

Alef Zero

Alef Zero

Alef Zero

Chapter 2 Understanding the .NET Remoting Architecture 33

Figure 2-6 shows how each client holds a reference to a different client-
activated type instance.

F02wn06Figure 2-6 Client activation

An Object’s Lease on Life
.NET Remoting uses a lease-based form of distributed garbage collection to
manage the lifetime of remote objects. To understand the reasoning behind this
choice of lifetime management systems, consider a situation in which many cli-
ents are communicating with a server-activated Singleton-mode remote object.
Non-lease-based lifetime management schemes can use a combination of ping-
ing and reference counting to determine when an object should be garbage col-
lected. The reference count indicates the number of connected clients, while
pinging ensures that the clients are still active. In this situation, the network traf-
fic incurred by pinging might have adverse effects on the overall operation of
the distributed application. In contrast, the lease-based lifetime management
system uses a combination of leases, sponsors, and a lease manager. Because
the lease-based lifetime management system doesn’t use pinging, it offers an
increase in overall performance. Figure 2-7 shows the distributed lifetime man-
agement architecture employed by .NET Remoting.

����������	
�����	

�������
�����
�����
��������

 ��������������$
������

����������	
�����	

�������
�����
�����
��������

 ��������������$
������

�������,

&�������
�������������
�������,

&�������
�������������
�������(

�������(

 �����
���������������$

������

 �����
���������������$

������

&���������
��/��
�

���+��$�$
�����
���
�!!��������
$�
���

C02617783.fm Page 33 Wednesday, August 14, 2002 3:45 PM

Alef Zero
F02wn06 Figure 2-6 Client activation
����������	
�����	
���˘�ˇ�
ˆ�˙˝˛
˙˝˚��
��������
 �˙�˝�����˙����$
ˆ�����
����������	
�����	
���˘�ˇ�
ˆ�˙˝˛
˙˝˚��
��������
 �˙�˝�����˙����$
ˆ�����
�������,
&��˙����
��˚���˝���˚ˆ�
ˆ������,
&��˙����
��˚���˝���˚ˆ�
ˆ������(
�������(
 �����
��˙�˝�����˙����$
ˆ�����
 �����
��˙�˝�����˙����$
ˆ�����
&��˙���˙ˆ˝
��/��
�

˚ˆ�+��$�$
�ˆ���
ˆ��
�!!�˙���˙ˆ˝
$ˆ
�˙˝

Alef Zero
 �����
��˙�˝�����˙����$
ˆ����

Alef Zero
 �����

Alef Zero
�

Alef Zero
�

Alef Zero
�

Alef Zero
$

Alef Zero
ˆ

Alef Zero
�

Alef Zero
�

Alef Zero
�

Alef Zero
&��˙����
��˚���˝���˚ˆ�
ˆ������,
��˚���˝���˚ˆ�
ˆ������(
��˙�˝�����˙����$
ˆ�����

Alef Zero
�

Alef Zero
�

Alef Zero
 �˙�˝�����˙����$
ˆ�����
 �˙�˝�����˙����$
ˆ�����

Alef Zero
An Object’s Lease on Life

Alef Zero
Lease

Alef Zero
NET Remoting

Alef Zero
lease-based form of distributed garbage collection

Alef Zero
manage the lifetime of remote objects.

Alef Zero
pinging

Alef Zero
reference counting

Alef Zero
Non-lease-based lifetime management schemes can use a combination of pinging
and reference counting to determine when an object should be garbage collected.
The reference count indicates the number of connected clients, while
pinging ensures that the clients are still active. In this situation, the network traffic
incurred by pinging might have adverse effects on the overall operation of

Alef Zero

Alef Zero
In contrast,

Alef Zero
lease-based lifetime management

Alef Zero
system

Alef Zero
combination

Alef Zero
leases,

Alef Zero
sponsors,

Alef Zero
lease manager.

Alef Zero
increase in overall performance.

Alef Zero

Alef Zero

Alef Zero

34 Microsoft .NET Remoting

F02wn07Figure 2-7 .NET Remoting uses a lease-based lifetime management
system to achieve distributed garbage collection.

In Figure 2-7, each application domain contains a lease manager. The
lease manager holds references to a lease object for each server-activated Sin-
gleton or each client-activated remote object activated within the lease man-
ager’s application domain. Each lease can have zero or more associated
sponsors that are capable of renewing the lease when the lease manager deter-
mines that the lease has expired.

Leases
A lease is an object that encapsulates TimeSpan values that the .NET Remoting
infrastructure uses to manage the lifetime of a remote object. The .NET Remot-
ing infrastructure provides the ILease interface that defines this functionality.
When the runtime activates an instance of either a well-known Singleton or a
client-activated remote object, it asks the object for a lease by calling the
object’s InitializeLifetimeServices method, inherited from System.MarshalByRe-
fObject. You can override this method to return a lease with values other than
the default. The following code listing provides an override in the SomeM-
BRType class of the InitializeLifetimeServices method:

class SomeMBRType : MarshalByRefObject
{

§

public override object InitializeLifetimeService()
{

����������	
�����	

0��
��
������

����*

�

������$�+���

��
����������
	%�����������
���������������$�

%!��
��	
�

����
����$�+���

0��
�

C02617783.fm Page 34 Wednesday, August 14, 2002 3:45 PM

Alef Zero
F02wn07 Figure 2-7 .NET Remoting uses a lease-based lifetime management
system to achieve distributed garbage collection.
����������	
�����	
0��
��
�˝�˛��
˘���*

�

ˆ�˙���$�+˙��
ˇ�
ˆ���ˆ�����
	%˙˝˛���ˆ˝�ˆ�
��˙�˝�����˙����$�
%!ˆ˝
ˆ�	
�
��˛˙
����$�+˙��
0��
�

Alef Zero
sponsors

Alef Zero
capable of renewing

Alef Zero
lease

Alef Zero
object activated within the lease

Alef Zero
Leases

Alef Zero
A lease is an object that encapsulates TimeSpan values

Chapter 2 Understanding the .NET Remoting Architecture 35

// Returning null means the lease will never expire.
return null;

}

§
}

We’ll show another example of overriding the InitializeLifetimeService
method in Chapter 3.

The ILease interface defines the following properties that the .NET Remot-
ing infrastructure uses to manage an object’s lifetime:

■ InitialLeaseTime

■ RenewOnCallTime

■ SponsorshipTimeout

■ CurrentLeaseTime

We’ll look at an example of manipulating a lease’s properties in Chapter 3.
For now, it’s important to understand the purpose of each of the properties that
ILease defines. The InitialLeaseTime property is a TimeSpan value that deter-
mines how long the lease is initially valid. When the .NET Remoting infrastruc-
ture first obtains the lease for a remote object, the lease’s CurrentLeaseTime will
be equal to InitialLeaseTime. An InitialLeaseTime value of 0 indicates that the
lease will never expire.

The .NET Remoting infrastructure uses the RenewOnCallTime property to
renew a lease each time a client calls a method on the remote object associated
with the lease. When the client calls a method on the remote object, the .NET
Remoting infrastructure will determine how much time remains until the lease
expires. If the time remaining is less than RenewOnCallTime, the .NET Remot-
ing infrastructure renews the lease for the time span indicated by Renew-
OnCallTime.

The SponsorshipTimeout property is essentially a timeout value that indi-
cates how long the .NET Remoting infrastructure will wait after notifying a
sponsor that the lease has expired. We’ll look at sponsors shortly.

The CurrentLeaseTime property indicates the amount of time remaining
until the lease expires. This property is read-only.

Lease Manager
Each application domain contains a lease manager that manages leases for
instances of remotable object types residing in the application domain. When
the .NET Remoting infrastructure activates a remote object, the .NET Remoting

C02617783.fm Page 35 Wednesday, August 14, 2002 3:45 PM

Alef Zero
ILease interface

Alef Zero
properties

Alef Zero
■ InitialLeaseTime
■ RenewOnCallTime
■ SponsorshipTimeout
■ CurrentLeaseTime

Alef Zero
Lease Manager
Each application

Alef Zero
Each application domain

Alef Zero
lease manager

Alef Zero
manages leases for

Alef Zero
instances of remotable object types residing in the application domain.

36 Microsoft .NET Remoting

infrastructure registers a lease for that object with the application domain’s lease
manager. The lease manager maintains a System.Hashtable member that maps
leases to System.DateTime instances that represent when each lease is due to
expire. The lease manager periodically enumerates all the leases it’s currently
managing to determine whether the current time is greater than the lease’s expi-
ration time. By default, the lease manager wakes up every 10 seconds and
checks whether any leases have expired, but this polling interval is config-
urable. The following code snippet changes the lease manager’s polling interval
to 5 minutes:

LifetimeServices.LeaseManagerPollTime = System.TimeSpan.FromMinutes(5);

The lease manager notifies each expired lease that it has expired, at which
point the lease will begin asking its sponsors to renew it. If the lease doesn’t
have any sponsors or if all sponsors fail to renew the lease, the lease will cancel
itself by performing the following operations:

1. Sets its state to System.Runtime.Remoting.Lifetime.LeaseState.Expired

2. Notifies the lease manager that it should remove this lease from its
lease table

3. Disconnects the remote object from the .NET Remoting infrastructure

4. Disconnects the lease object from the .NET Remoting infrastructure

At this point, the .NET Remoting infrastructure will no longer reference the
remote object or its lease, and both objects will be available for garbage collec-
tion. Consider what will happen if a client attempts to make a method call on
a remote object whose lease has expired. The remote object’s activation mode
will dictate the results. If the remote object is server activated in Singleton
mode, the next method call will result in the activation of a new instance of the
remote object. If the remote object is client activated, the .NET Remoting infra-
structure will throw an exception because the client is attempting to reference
an object that’s no longer registered with the .NET Remoting infrastructure.

Sponsors
As mentioned earlier, sponsors are objects that can renew leases for remote
objects. You can define a type that can act as a sponsor by implementing the
ISponsor interface. Note that because the sponsor receives a callback from the
remote object’s application domain, the sponsor itself must be a type derived
from System.MarshalByRefObject. Once you have a sponsor, you can register it
with the lease by calling the ILease.Register method. A lease can have many
sponsors.

C02617783.fm Page 36 Wednesday, August 14, 2002 3:45 PM

Alef Zero
Sponsors

Alef Zero
sponsors are objects that can renew leases for remote

Alef Zero
objects.

Chapter 2 Understanding the .NET Remoting Architecture 37

For convenience, the .NET Framework defines the ClientSponsor class in
the System.Runtime.Remoting.Lifetime namespace that you can use in your
code. ClientSponsor derives from System.MarshalByRefObject and implements
the ISponsor interface. The ClientSponsor class enables you to register remote
object references for the class to sponsor. When you call the ClientSponsor.Reg-
ister method and pass it a remote object reference, the method will register itself
as a sponsor with the remote object’s lease and map the remote object reference
to the lease object in an internal hash table. You set the ClientSponsor.Renewal-
Time property to the time span by which you want the property to renew the
lease. The following listing shows how to use the ClientSponsor class:

// Use the ClientSponsor class: assumes someMBR references an
// existing instance of a MarshalByRefObject derived type.
ClientSponsor cp = new ClientSponsor(TimeSpan.FromMinutes(5));
cp.Register(someMBR);

Crossing Application Boundaries
Earlier in this chapter, we mentioned that the divisions between application
domains and contexts form .NET Remoting boundaries. The .NET Remoting
infrastructure largely consists of facilities that handle the details of enabling
objects to interact across these boundaries. Having defined some basic concepts
in the previous sections, we can look at the overall sequence of events that
occurs when a client of a remote object activates the object and then calls a
method on that object.

Marshaling Remote Object References via an ObjRef
We mentioned earlier that objects in one .NET Remoting subdivision can’t
directly access instances of marshal-by-reference types in another .NET Remot-
ing subdivision. So how does .NET Remoting enable objects to communicate
across .NET Remoting boundaries? In simple terms, the client uses a proxy
object to interact with the remote object by using some means of interprocess
communication. We’ll look at proxies in more detail shortly, but before we do,
we’ll discuss how the .NET Remoting infrastructure marshals a reference to a
marshal-by-reference object from one .NET Remoting subdivision to another.

There are at least three cases in which a reference to a marshal-by-refer-
ence object might need to cross a .NET Remoting boundary:

■ Passing the marshal-by-reference object in a function argument

■ Returning the marshal-by-reference object from a function

■ Creating a client-activated marshal-by-reference object

C02617783.fm Page 37 Wednesday, August 14, 2002 3:45 PM

Alef Zero
Crossing Application Boundaries

Alef Zero
NET Remoting

Alef Zero
infrastructure largely consists of facilities that handle the details of enabling
objects to interact across these boundaries.

Alef Zero

Alef Zero

Alef Zero
Marshaling Remote Object References via an ObjRef
We mentioned earlier that objects in one .NET Remoting

Alef Zero
ObjRef

Alef Zero
how does .NET Remoting enable objects to communicate

Alef Zero
across

Alef Zero
NET Remoting boundaries?

Alef Zero
proxy

Alef Zero
In simple terms, the client uses a proxy

Alef Zero
object to interact with the remote object

Alef Zero
object

Alef Zero
how the .NET Remoting infrastructure marshals a reference to a

Alef Zero
marshal-by-reference object from one .NET Remoting subdivision to another.

Alef Zero

Alef Zero

Alef Zero

Alef Zero
■ Passing the marshal-by-reference object in a function argument
■ Returning the marshal-by-reference object from a function
■ Creating a client-activated marshal-by-reference object

Alef Zero
in a function argument

Alef Zero
Returning

Alef Zero
from a function

Alef Zero
Creating

Alef Zero
object

38 Microsoft .NET Remoting

In these cases, the .NET Remoting infrastructure employs the services of
the System.Runtime.Remoting.ObjRef type. Marshaling is the process of trans-
ferring an object reference from one .NET Remoting subdivision to another. To
marshal a reference to a marshal-by-reference type from one .NET Remoting
subdivision to another, the .NET Remoting infrastructure performs the following
tasks:

1. Creates an ObjRef instance that fully describes the type of the mar-
shal-by-reference object

2. Serializes the ObjRef into a bit stream

3. Transfers the serialized ObjRef to the target .NET Remoting subdivision

After receiving the serialized ObjRef, the Remoting infrastructure operating
in the target .NET Remoting subdivision performs the following tasks:

1. Deserializes the serialized ObjRef representation into an ObjRef
instance

2. Unmarshals the ObjRef instance into a proxy object instance that the
client can use to access the remote object

To achieve the functionality just described, the ObjRef type is serializable
and encapsulates several vital pieces of information necessary for the .NET
Remoting infrastructure to instantiate a proxy object in the client application
domain.

URI
When the .NET Remoting infrastructure activates an instance of a marshal-by-
reference object within an application, it assigns it a Uniform Resource Identi-
fier that the client uses in all subsequent requests on that object reference. For
server-activated types, the Uniform Resource Identifier corresponds to the pub-
lished well-known endpoint configured by the host application. For client-
activated types, the .NET Remoting infrastructure generates a Globally Unique
Identifier (GUID) for the URI and maps it to the remote object instance.

Metadata
Metadata is the DNA of .NET. No, we’re not talking about Distributed Network
Applications; we’re talking about the basic building blocks of the common lan-
guage runtime. The ObjRef contains type information, or metadata, that
describes the marshal-by-reference type. The type information consists of the
marshal-by-reference object’s fully qualified type name; the name of the assem-

C02617783.fm Page 38 Wednesday, August 14, 2002 3:45 PM

Alef Zero
To

Alef Zero
marshal a reference

Alef Zero
marshal-by-reference

Alef Zero
type

Alef Zero
.NET Remoting

Alef Zero
subdivision

Alef Zero
another,

Alef Zero

Alef Zero
1. Creates an ObjRef instance that fully describes the type of the marshal-
by-reference object
2. Serializes the ObjRef into a bit stream
3. Transfers the serialized ObjRef to the target .NET Remoting subdivision

Alef Zero
1. Deserializes the serialized ObjRef representation into an ObjRef
instance
2. Unmarshals the ObjRef instance into a proxy object instance that the
client can use to access the remote object

Alef Zero
ObjRef

Alef Zero
instance

Alef Zero
Serializes

Alef Zero
Transfers

Alef Zero
target

Alef Zero
Deserializes

Alef Zero
Unmarshals

Alef Zero
into a proxy object

Alef Zero
ObjRef type is serializable

Alef Zero
and encapsulates several vital pieces of information

Alef Zero
ObjRef

Alef Zero
URI

Alef Zero
activates an instance of a marshal-

Alef Zero
byreference
object

Alef Zero
activates

Alef Zero
it assigns

Alef Zero
Uniform Resource Identifier

Alef Zero
When the .NET Remoting infrastructure

Alef Zero
Metadata

Alef Zero
an instance

Alef Zero
object

Alef Zero
Uniform Resource Identifier corresponds

Alef Zero
well-known endpoint

Alef Zero
by the host application.

Alef Zero
For clientactivated

Alef Zero
GUID)

Alef Zero
GUID)

Alef Zero
for

Alef Zero
the

Alef Zero
URI

Alef Zero
and maps it to the remote object instance.

Alef Zero
Metadata is the DNA of .NET.

Alef Zero
ObjRef contains type information,

Alef Zero
describes the marshal-by-reference type.

Alef Zero
the name of the assem-

Alef Zero
type information,

Alef Zero
type information consists of the

Alef Zero
marshal-by-reference object’s fully qualified type name; the name of the assem-

Chapter 2 Understanding the .NET Remoting Architecture 39

bly containing the type’s implementation; and the assembly version, culture,
and public key token information. The .NET Remoting infrastructure also seri-
alizes this type information for each type in the derivation hierarchy, along with
any interfaces that the marshal-by-reference type implements, but the infra-
structure doesn’t serialize the type’s implementation.

We can draw a subtle yet important conclusion from the type information
conveyed in the ObjRef instance: because the ObjRef conveys information that
describes a type’s containing assembly and derivation hierarchy but fails to con-
vey the type’s implementation, the receiving application domain must have
access to the assembly defining the type’s implementation. This requirement
has many implications for how you deploy your remote object, which we’ll
examine in Chapter 3.

Channel Information
Along with the URI and type information, the ObjRef carries information that
informs the receiving .NET Remoting subdivision how it can access the remote
object. .NET Remoting uses channels to convey the serialized ObjRef instance,
as well as other information, across .NET Remoting boundaries. We’ll examine
channels shortly, but for now, it’s enough to know that the ObjRef conveys two
sets of channel information:

■ Information identifying the context, application domain, and process
containing the object being marshaled

■ Information identifying the transport type (for example, HTTP), IP
address, and port to which requests should be addressed

Clients Communicate with Remote Objects via Proxies
As we mentioned earlier, after the ObjRef arrives in the client .NET Remoting
subdivision, the .NET Remoting infrastructure deserializes it into an ObjRef
instance and unmarshals the ObjRef instance into a proxy object. The client uses
the proxy object to interact with the remote object represented by the ObjRef.
We’ll discuss proxies in detail in Chapter 5, “Messages and Proxies.” For now,
we want to limit this discussion to the conceptual aspects of proxies to help you
better understand their role in .NET Remoting.

Figure 2-8 shows the relationship between a client object and the two
types of proxies: transparent and real. The .NET Remoting infrastructure utilizes
these two proxy types to achieve seamless interaction between the client and
the remote object.

C02617783.fm Page 39 Wednesday, August 14, 2002 3:45 PM

Alef Zero
assembly version,

Alef Zero
culture,

Alef Zero
public key token information.

Alef Zero
containing

Alef Zero
assembly

Alef Zero
version,

Alef Zero
culture,

Alef Zero
key

Alef Zero

Alef Zero
We can draw a subtle yet important conclusion

Alef Zero
ObjRef

Alef Zero
but fails to convey

Alef Zero
the type’s implementation,

Alef Zero
receiving application domain must have

Alef Zero
access to the assembly defining the type’s implementation.

Alef Zero
Channel Information

Alef Zero
ObjRef

Alef Zero
URI

Alef Zero
type

Alef Zero
information,

Alef Zero
ObjRef

Alef Zero
informs the receiving .NET Remoting subdivision

Alef Zero
how it can access the remote

Alef Zero
object.

Alef Zero
uses

Alef Zero
channels

Alef Zero
convey the serialized ObjRef instance,

Alef Zero
ObjRef conveys two

Alef Zero
sets of channel information:

Alef Zero
■ Information identifying the context, application domain, and process
containing the object being marshaled
■ Information identifying the transport type (for example, HTTP), IP
address, and port to which requests should be addressed

Alef Zero
Clients Communicate with Remote Objects via Proxies

Alef Zero
after the ObjRef arrives in the client

Alef Zero
deserializes

Alef Zero
it into an ObjRef

Alef Zero
instance

Alef Zero
unmarshals the ObjRef instance into a proxy object.

Alef Zero

Alef Zero
Figure 2-8 shows the relationship between a client object and the two

Alef Zero
transparent

Alef Zero
real.

Alef Zero
two

Alef Zero
types of proxies:

40 Microsoft .NET Remoting

F02wn08Figure 2-8 The .NET Remoting infrastructure utilizes two kinds of prox-
ies to enable clients to interact with the remote object: transparent and real.

Transparent Proxy
The transparent proxy is the one that the client directly accesses. When the
.NET Remoting infrastructure unmarshals an ObjRef into a proxy, it generates
on the fly a TransparentProxy instance that has an interface identical to the
interface of the remote object. The client has no idea it’s interacting with any-
thing other than the actual remote object’s type. The .NET Remoting infrastruc-
ture def ines and implements TransparentProxy internal ly as the
System.Runtime.Remoting.Proxies.__TransparentProxy type.

When a client makes a method call on the transparent proxy, the proxy
simply converts the method call into a message object, which we’ll discuss
shortly. The transparent proxy then forwards the message to the second proxy
type, RealProxy.

����������	
�����	

�������&

��������
	
��
�����������������

�������
�����
�����
��������

'���*�
�
����$
�����������

����
!�����
!��)�

����
!��)�

�������
�����
�����
��������

.�

����������

'���*�
�
����$���
����������
�������
���+���������������
���������$�������

.�

���
������

����������	
�����	
�

C02617783.fm Page 40 Wednesday, August 14, 2002 3:45 PM

Alef Zero
F02wn08 Figure 2-8 The .NET Remoting infrastructure utilizes two kinds of proxies
to enable clients to interact with the remote object: transparent and real.
����������	
�����	

�������&
��������
	
��
���������˚���˝���
���˘�ˇ�
ˆ�˙˝˛
˙˝˚��
��������
'˝�ˆ*�
�
���ˆ$
ˆ˝�ˆ�������
˘��˝
!���˝�
!�ˆ)�
ˇ���
!�ˆ)�
���˘�ˇ�
ˆ�˙˝˛
˙˝˚��
��������
.�

�˛��ˆ�����
'˝�ˆ*�
�
���ˆ$�ˆ˝
ˆ���������
���ˆ�˛�
˙��+������˚���˝�˙˝˛
ˆ��������$˙������
.�

�˛�
ˆ�����
����������	
�����	
�

Alef Zero
�

Alef Zero
�������&
˘��˝
!���˝�
!�ˆ)�
ˇ���
!�ˆ)�
'˝�ˆ*�
�
���ˆ$�ˆ˝
ˆ���������
���ˆ�˛�
˙��+������˚���˝�˙˝˛
ˆ��������$˙������
.�

�˛�
ˆ�����

Alef Zero
�

�˛��ˆ���

Alef Zero
'˝�ˆ*�
�
���ˆ$
ˆ˝�ˆ�������

Alef Zero
��
���������˚���˝�

Alef Zero

Alef Zero

Alef Zero
Transparent Proxy
The transparent proxy is

Alef Zero
The transparent proxy is the one that the client directly accesses.

Alef Zero
NET Remoting infrastructure unmarshals an ObjRef into a proxy,

Alef Zero
it generates

Alef Zero
a TransparentProxy

Alef Zero
instance

Alef Zero
has an interface identical

Alef Zero
interface of the remote object.

Alef Zero
The .NET Remoting infrastructure

Alef Zero
defines

Alef Zero
implements

Alef Zero
defines

Alef Zero
implements

Alef Zero
TransparentProxy

Alef Zero
internally

Alef Zero
internally

Alef Zero
When a client makes a method call on the transparent proxy,

Alef Zero
proxy

Alef Zero
simply converts the method call into a message object,

Alef Zero

Alef Zero

Alef Zero
then forwards the message to the second proxy

Alef Zero
RealProxy.

Alef Zero
The transparent proxy then forwards

Alef Zero
second

Chapter 2 Understanding the .NET Remoting Architecture 41

Real Proxy
The real proxy is the workhorse that takes the message created by the transpar-
ent proxy and sends it to the .NET Remoting infrastructure for eventual delivery
to the remote object.

The System.Runtime.Remoting.Proxies.RealProxy type is an abstract class;
therefore, you can’t create instances of it directly. This class is the base class for
all proxy types that plug into the .NET Remoting infrastructure. In fact, the .NET
Remoting infrastructure defines a RemotingProxy class that extends RealProxy.
The infrastructure uses the RemotingProxy class to handle the role of Real-
Proxy, but you can derive your own custom proxy type from RealProxy and use
it in place of the one provided by the runtime. We’ll demonstrate how to define
and use a custom proxy in Chapter 5.

Messages Form the Basis of Remoting
Let’s briefly digress from .NET Remoting to consider what happens when we
make a method call in a nonremote object-oriented environment. Logically
speaking, when you make a method call on an object, you’re signaling the
object to perform some function. In a way, you’re sending the object a message
composed of values passed as arguments to that method. The address of the
method’s entry point is the destination address for the message. At a very low
level, the caller pushes the method arguments onto the stack, along with the
address to which execution should return when the method completes. Then
the caller calls the method by setting the application’s instruction pointer to the
method’s entry point. Because the caller and the method agree on a calling con-
vention, the method knows how to obtain its arguments from the stack in the
correct order. In reality, the stack assumes the role of a communications trans-
port layer between method calls, conveying function arguments and return
results between the caller and the callee.

Encapsulating the information about the method call in a message object
abstracts and models the method-call-as-message concept in an object-oriented
way. The message object conveys the method name, arguments, and other
information about the method call from the caller to the callee. .NET Remoting
uses such a scheme to enable distributed objects to interact with one another.
Message objects encapsulate all method calls, input arguments, constructor
calls, method return values, output arguments, exceptions, and so on.

.NET Remoting message object types implement the System.Run-
time.Remoting.Messages.IMessage interface and are serializable. IMessage defines
a single property member of type IDictionary named Properties. The dictionary

C02617783.fm Page 41 Wednesday, August 14, 2002 3:45 PM

Alef Zero
Real Proxy
The real proxy is

Alef Zero
The real proxy is the workhorse

Alef Zero
takes the message

Alef Zero
sends it to the .NET Remoting infrastructure

Alef Zero
for eventual delivery

Alef Zero
to the remote object.

42 Microsoft .NET Remoting

holds named properties and values that describe various aspects of the called
method. The dictionary typically contains information such as the URI of the
remote object, the name of the method to invoke, and any method parameters.
The .NET Remoting infrastructure serializes the values in the dictionary when it
transfers the message across a .NET Remoting boundary. The .NET Remoting
infrastructure derives several kinds of message types from IMessage. We’ll look at
these types and messages in more detail in Chapter 5, “Messages and Proxies.”

Note Remember that only instances of serializable types can cross
.NET Remoting boundaries. Keep in mind that the .NET Remoting
infrastructure will serialize the message object to transfer it across the
.NET Remoting boundary. This means that any object placed in the
message object’s Properties dictionary must be serializable if you
want it to flow across the .NET Remoting boundary with the message.

Channels Transport Messages Across Remoting Boundaries
.NET Remoting transports serialized message objects across .NET Remoting
boundaries through channels. Channel objects on either side of the boundary
provide a highly extensible communications transport mechanism that poten-
tially can support a wide variety of protocols and wire formats. The .NET
Remoting infrastructure provides two types of channels you can use to provide
a transport mechanism for your distributed applications: TCP and HTTP. If these
channels are inadequate for your transport requirements, you can create your
own transport and plug it into the .NET Remoting infrastructure. We’ll look at
customizing and plugging into the channel architecture in Chapter 7, “Channels
and Channel Sinks.”

TCP
For maximum efficiency, the .NET Remoting infrastructure provides a socket-
based transport that utilizes the TCP protocol for transporting the serialized
message stream across .NET Remoting boundaries. The TcpChannel type
defined in the System.Runtime.Remoting.Channels.Tcp namespace implements
the IChannel, IChannelReceiver, and IChannelSender interfaces. This means
that TcpChannel supports both sending and receiving data across .NET Remot-
ing boundaries. The TcpChannel type serializes message objects by using a
binary wire format by default. The following code snippet configures an appli-

C02617783.fm Page 42 Wednesday, August 14, 2002 3:45 PM

Alef Zero
Channels Transport Messages Across Remoting Boundaries

Alef Zero
through

Alef Zero
channels.

Alef Zero
NET Remoting transports serialized message objects across .NET Remoting

Alef Zero
boundaries through channels.

Alef Zero

Alef Zero
objects

Alef Zero
transport mechanism

Alef Zero
two types of channels

Alef Zero
TCP

Alef Zero
HTTP.

Alef Zero

Alef Zero

Alef Zero

Alef Zero
TCP

Alef Zero
efficiency,

Alef Zero
socketbased

Alef Zero
transport that utilizes the TCP

Alef Zero
binary wire format by default.

Chapter 2 Understanding the .NET Remoting Architecture 43

cation domain with an instance of the TcpChannel type that listens for incom-
ing connections on port 2000:

using System.Runtime.Remoting.Channels;
using System.Runtime.Remoting.Channels.Tcp;
§
TcpChannel c = new TcpChannel(2000);
ChannelServices.Register(c);

HTTP
For maximum interoperability, the .NET Remoting infrastructure provides a
transport that utilizes the HTTP protocol for transporting the serialized message
stream across the Internet and through firewalls. The HttpChannel type defined
in the System.Runtime.Remoting.Channels.Http namespace implements the
HTTP transport functionality. Like the TcpChannel type, HttpChannel can send
and receive data across .NET Remoting boundaries. The HttpChannel type seri-
alizes message objects by using a SOAP wire format by default. The following
code snippet configures an application domain with an instance of the
HttpChannel type that listens for incoming connections on port 80:

using System.Runtime.Remoting.Channels;
using System.Runtime.Remoting.Channels.Http;
§
HttpChannel c = new HttpChannel(80);
ChannelServices.Register(c);

Channel Sink Chains Can Act on Messages
The .NET Remoting architecture is highly flexible because it possesses a clear
separation of object responsibilities. The channel architecture provides flexibil-
ity by employing a series of channel sink objects linked together into a sink
chain. Each channel sink in the chain has a clearly defined role in the process-
ing of the message. In general, each channel sink performs the following tasks:

1. Accepts the message and a stream from the previous sink in the
chain

2. Performs some action based on the message or stream

3. Passes the message and stream to the next sink in the chain

At a minimum, channels transport the serialized messages across .NET
Remoting boundaries by using two channel sink objects. Figure 2-9 shows the
client-side channel architecture.

C02617783.fm Page 43 Wednesday, August 14, 2002 3:45 PM

Alef Zero
using System.Runtime.Remoting.Channels;
using System.Runtime.Remoting.Channels.Tcp;
§
TcpChannel c = new TcpChannel(2000);
ChannelServices.Register(c);

Alef Zero
HTTP

Alef Zero
For maximum interoperability,

Alef Zero
HTTP protocol

Alef Zero
transporting the serialized message

Alef Zero
stream across the Internet and through firewalls.

Alef Zero
The HttpChannel type serializes

Alef Zero
message

Alef Zero
objects

Alef Zero
using a SOAP

Alef Zero
using System.Runtime.Remoting.Channels;
using System.Runtime.Remoting.Channels.Http;
§
HttpChannel c = new HttpChannel(80);
ChannelServices.Register(c);

Alef Zero
Sink

Alef Zero
Channel Sink Chains Can Act on Messages
The .NET Remoting architecture is highly flexible because

Alef Zero
The channel architecture provides flexibility

Alef Zero
employing a series of channel sink objects

Alef Zero
linked together into a sink

Alef Zero
chain.

Alef Zero
processing

Alef Zero
of the message.

Alef Zero
1. Accepts the message and a stream from the previous sink in the
chain
2. Performs some action based on the message or stream
3. Passes the message and stream to the next sink in the chain

Alef Zero
Accepts

Alef Zero
from the previous sink

Alef Zero
Performs some action

Alef Zero
to the next sink in the chain

44 Microsoft .NET Remoting

F02wn09Figure 2-9 Client-side channel architecture

In Figure 2-9, the client object makes calls on a transparent proxy, which in
turn converts the method call into a message object and passes that object to the
RealProxy—actually a RemotingProxy derived from RealProxy. The Remoting-
Proxy passes the message object to a set of specialized sink chains within the
context (not shown in Figure 2-9), which we’ll discuss in detail in Chapter 6,
“Message Sinks and Contexts.” The message object makes its way through the
context sink chains until it reaches the first sink in the channel’s sink chain: a for-
matter sink, which is responsible for serializing the message object to a byte
stream by using a particular wire format. The formatter sink then passes the
stream to the next sink in the chain for further processing. The last sink in the

����
!������!��)�

�����!��)�

���		��

.�

����������
����!
�����������
����
����$�����

.�

����������
����!
�����������
����
����$�����

1��
������
��*

 �������
��*

 �������
��*

����
!���

��*

����

 ������������

�����

%����
�����������

������#�$�
�

����������

%����
�����������

������#�$�
�

����������

��$�
��*����$��

����
!����!�����������$��
2

������#�$�
�

����������2

��$�
��*����$��

C02617783.fm Page 44 Wednesday, August 14, 2002 3:45 PM

Alef Zero
F02wn09 Figure 2-9 Client-side channel architecture
˘��˝
!���˝��!�ˆ)�
ˇ����!�ˆ)�
���		��
.�

�˛��ˆ�����
�˝��!
����˙˝˛����
����
���ˆ$�����
.�

�˛��ˆ�����
�˝��!
����˙˝˛����
����
���ˆ$�����
1ˆ�
������
˙˝*
 ��˝˝���
˙˝*
 ��˝˝���
˙˝*
˘��˝
!ˆ��

˙˝*
˜˙��
 �˙�˝��ˆ�����
�����
%����
��ˆ˝��˙˝˙˝˛

��˙��˙#�$�
�

�˛��ˆ�����
%����
��ˆ˝��˙˝˙˝˛

��˙��˙#�$�
�

�˛��ˆ�����
�˝$�
˙˝*����$��

˘��˝
!ˆ���!�ˆ�ˆ�ˆ�����$��
2

��˙��˙#�$�
�

�˛��ˆ�����2
�˝$�
˙˝*����$��

Alef Zero

Alef Zero
.�

�˛

Alef Zero
�

Alef Zero
�

Alef Zero
�

Alef Zero
!

Alef Zero
�

Alef Zero
���

Alef Zero
���ˆ$����

Alef Zero
���		��

Alef Zero

Alef Zero
1

Alef Zero
�
������
˙˝

Alef Zero
 ��˝˝���
˙˝*

Alef Zero
 ��˝˝���
˙˝*

Alef Zero

Alef Zero

Alef Zero
%����
��ˆ˝��˙˝˙˝˛

��˙��˙#�$�
�

�˛��ˆ�����
�˝$�
˙˝*����$��

Alef Zero

Alef Zero
Client-side channel architecture

Chapter 2 Understanding the .NET Remoting Architecture 45

channel sink chain is responsible for transporting the stream over the wire by
using a specific transport protocol.

Formatter Sinks Serialize Message Objects to a Stream
.NET Remoting provides two types of formatter sinks for serializing messages:
BinaryFormatter and SoapFormatter. The type you choose largely depends on
the type of network environment connecting your distributed objects. Because
of the pluggable nature of the .NET Remoting architecture, you can create your
own formatter sinks and plug them into the .NET Remoting infrastructure. This
flexibility enables the infrastructure to support a potentially wide variety of wire
formats. We’ll look at creating a custom formatter in Chapter 8, “Formatters.”
For now, let’s take a quick look at what .NET Remoting provides out of the box.

For network transports that allow you to send and receive binary data
(such as TCP/IP), you can use the BinaryFormatter type defined in the Sys-
tem.Runtime.Serialization.Formatters.Binary namespace. As its name suggests,
BinaryFormatter serializes message objects to a stream in a binary format. This
can be the most efficient and compact way of representing a message object for
transport over the wire.

Some network transports don’t allow you to send and receive binary data.
These transports force applications to convert all binary data into an ASCII text
representation before sending it over the wire. In such situations or for maxi-
mum interoperability, .NET Remoting provides the SoapFormatter type in the
System.Runtime.Serialization.Formatters.Soap namespace. SoapFormatter seri-
alizes messages to a stream by using a SOAP representation of the message.
We’ll discuss SOAP in more detail in Chapter 4, “SOAP and Message Flows.”

Transport Sinks Interface with the Wire
The transport sink knows how to transfer data between itself and its counter-
part across the .NET Remoting boundary by using a specific transport protocol.
For example, HttpChannel uses a transport sink capable of sending and receiv-
ing HTTP requests and responses to transport the serialized message stream
data from one .NET Remoting subdivision to another.

A transport sink terminates the client-side channel sink chain. When this
sink receives the message stream, it first writes transport protocol header infor-
mation to the wire and then copies the message stream to the wire, which trans-
ports the stream across the .NET Remoting boundary to the server-side .NET
Remoting subdivision.

Figure 2-10 shows the server-side channel architecture. As you can see, it’s
largely the same as the client-side channel architecture.

C02617783.fm Page 45 Wednesday, August 14, 2002 3:45 PM

Alef Zero
Formatter Sinks Serialize Message Objects to a Stream

Alef Zero
two types of formatter sinks for serializing messages:

Alef Zero
BinaryFormatter

Alef Zero
SoapFormatter.

46 Microsoft .NET Remoting

F02wn10Figure 2-10 Server-side channel architecture

In Figure 2-10, the first sink on the server-side channel sink chain that the
serialized message stream encounters is a transport sink that reads the transport
protocol headers and the serialized message data from the stream. After pulling
this data off the wire, the transport sink passes this information to the next sink
in the server-side sink chain. Sinks in the chain perform their processing and
pass the resulting message stream and headers up the channel sink chain until
they reach the formatter sink. The formatter sink deserializes the message
stream and headers into an IMessage object and passes the message object to
the .NET Remoting infrastructure’s StackBuilderSink, which actually makes the
method call on the remote object. When the method call returns, the Stack-
BuilderSink packages the return result and any output arguments into a mes-
sage object of type System.Runtime.Remoting.Messaging.ReturnMessage, which

�����!��)�

���		��

1��
������
��*

 �������
��*

 �������
��*

����
!���

��*

����

%����
�����������

������#�$�
�

����������

%����
�����������

������#�$�
�

����������

��$�
��*����$��

����
!����!�����������$��
2

������#�$�
�

����������2

��$�
��*����$��

��
����������
	
��
�����������������

'���*�
������

.�

����������
����!
�����������
����
����$�����

C02617783.fm Page 46 Wednesday, August 14, 2002 3:45 PM

Alef Zero
F02wn10 Figure 2-10 Server-side channel architecture
ˇ����!�ˆ)�
���		��
1ˆ�
������
˙˝*
 ��˝˝���
˙˝*
 ��˝˝���
˙˝*
˘��˝
!ˆ��

˙˝*
˜˙��
%����
��ˆ˝��˙˝˙˝˛

��˙��˙#�$�
�

�˛��ˆ�����
%����
��ˆ˝��˙˝˙˝˛

��˙��˙#�$�
�

�˛��ˆ�����
�˝$�
˙˝*����$��

˘��˝
!ˆ���!�ˆ�ˆ�ˆ�����$��
2

��˙��˙#�$�
�

�˛��ˆ�����2
�˝$�
˙˝*����$��

ˇ�
ˆ���ˆ�����
	
��
���������˚���˝���
'˝�ˆ*�
������
.�

�˛��ˆ�����
�˝��!
����˙˝˛����
����
���ˆ$�����

Alef Zero

Alef Zero

Alef Zero

Alef Zero

Alef Zero

Alef Zero
ˇ����!�ˆ)�

Alef Zero

��
���������˚���˝���

Alef Zero
��˝
!ˆ��

˙˝*

Alef Zero
 ��˝˝���
˙˝*

Alef Zero
 ��˝˝���
˙˝*

Alef Zero
1ˆ�
������
˙˝*

Alef Zero
ˇ����!�ˆ)�
1ˆ�
������
˙˝*
.�

�˛��ˆ�����
�˝��!
����˙˝˛����
����
���ˆ$���

Alef Zero
Server-side channel architecture

Chapter 2 Understanding the .NET Remoting Architecture 47

the StackBuilderSink then passes back down the sink chain for eventual deliv-
ery to the proxy in the caller’s .NET Remoting subdivision.

Summary

In this chapter, we took a high-level view of each of the major architectural
components and concepts of the .NET Remoting infrastructure. Out of the box,
.NET Remoting supports distributed object communications over the TCP and
HTTP transports by using binary or SOAP representation of the data stream.
Furthermore, .NET Remoting offers a highly extensible framework for building
distributed applications. At almost every point in the processing of a remote
method call, the architecture allows you to plug in customized components.
Chapters 5 through 8 will show you how to exploit this extensibility in your
.NET Remoting applications.

Now that we’ve discussed the .NET Remoting architecture, we can pro-
ceed to the subject of Chapter 3: using .NET Remoting to build distributed
applications.

C02617783.fm Page 47 Wednesday, August 14, 2002 3:45 PM

C02617783.fm Page 48 Wednesday, August 14, 2002 3:45 PM

