
2-local 4/3-competitive Algorithm for Multicoloring Hexagonal

Graphs

Rafa l Witkowski∗

Adam Mickiewicz University,
Faculty of Mathematics and Computer Science,

Poznań, Poland
rmiw@amu.edu.pl

May 11, 2009

Abstract

In the frequency allocation problem we are given a cellular telephone network which
geographical coverage area is divided into cells where phone calls are serviced by fre-
quencies assigned to them, so that none of the pairs of calls emanating from the same or
neighboring cells is assigned the same frequency. The problem is to use the frequencies
efficiently, i.e. minimize the span of used frequencies. The frequency allocation problem
can be regarded as a multicoloring problem on a weighted hexagonal graph. In this
paper we present a 2-local 4/3-competitive distributed algorithm for a multicoloring of
hexagonal graph, which is 1-local, when we exclude some very specific subgraphs.

1 Introduction

The basic problem concerning cellular networks concentrates on assigning sets of frequen-
cies (colors) to transmitters (vertices) in order to avoid unacceptable interference (see [6]).
In an ordinary cellular model the transmitters are centers of hexagonal cells and the cor-
responding adjacency graph is a subgraph of the infinite triangular lattice. In our model
to each vertex v of a the triangular lattice T we assign a non-negative integer d(v), called
the demand (or weight) of the vertex v. A proper multicoloring of G is a mapping ϕ from
V (G) to subsets of integers (colors) [n] = {1, 2, . . . , n}, such that |ϕ(v)| = d(v) for any
vertex v ∈ G and ϕ(v) ∩ ϕ(u) = ∅ for any pair of adjacent vertices u and v in the graph
G. The minimal n for which there exists a proper multicoloring of G, denoted by χm(G),
is called the multichromatic number of G. A hexagonal graph G = (V,E, d) is the vertex

∗This work was supported by grant N206 017 32/2452 for years 2007-2010

1

weighted subgraph of T , induced by the set of its vertices with positive demands (the idea
of hexagonal graphs arise naturally in studies concerning cellular networks). The multi-
chromatic number is closely related to the weighted clique number ω(G), which is defined as
the maximum over all cliques of G of their weights, where the weight of a clique is the sum
of demands on its vertices. Obviously, for any graph, χm(G) ≥ ω(G), while for hexagonal
graphs (see, for example, [2], [3], [5]), χm(G) ≤

⌈
4ω(G)

3

⌉
+ O(1). Since all proofs of the

upper bound are constructive, therefore it implies the existence of a 4/3-competitive algo-
rithm, i.e. algorithms which can online serve calls with the approximation ratio equal to 4/3
respectively to the weighted clique number. It should be also mentioned, that McDiarmid
and Reed showed in [3] that to decide whether χm(G) = ω(G) is NP-complete.

In distributed graph algorithms a special role plays their ”locality” property. An algorithm
is k-local if the computation at any vertex v uses only the information about the demands
of vertices at distance at most k from v. For hexagonal graphs the best known 1-local
algorithm for multicoloring is 17/12-competitive, and it has been presented in [1]. In this
paper we develop a new, easier 2-local algorithm which with the same competitive ratio,
but for many hexagonal graphs it would be 1-local. In next sections we present in which
case our algorithm has to use information from vertices in distance 2, and we will see that
this is rarely situation. In this paper we will prove in different way than in [2] that:

Theorem 1.1. There is a 2-local distributed approximation algorithm for multicoloring
hexagonal graphs which uses at most

⌈
4
3ω(G)

⌉
+O(1) colors. Time complexity of the algo-

rithm at each vertex is constant.

In [7] it was proved that a k-local c-approximate algorithm can be easily converted to a
k-local c-competitive algorithm. Hence,

Corollary 1.2. There is a 2-local 4/3-competitive algorithm for multicoloring hexagonal
graphs.

In the next Section we formally define some basic terminology, while in Section 3 we present
the algorithm and prove Theorem 1.1.

2 Basic definition and useful facts

Following the notation from [3], the vertices of the triangular lattice T can be described as
follows: the position of each vertex is an integer linear combination x~p+ y~q of two vectors
~p = (1, 0) and ~q = (1

2 ,
√

3
2). Thus vertices of the triangular lattice may be identified with

pairs (x, y) of integers. Two vertices are adjacent when the Euclidean distance between them
is one. Therefore each vertex (x, y) has six neighbors: (x − 1, y), (x − 1, y + 1), (x, y + 1),
(x+ 1, y), (x+ 1, y − 1), (x, y − 1). For simplicity we refer to the neighbors as: left, up-left,
up-right, right, down-right and down-left. We define a hexagonal graph G = (V,E) as an
induced subgraph of the triangular lattice (see Figure 1).

2

Figure 1: An example of a hexagonal graph

There exists an obvious 3-coloring of the infinite triangular lattice which gives partition of
the vertex set of any hexagonal graph into three independent sets. Let us denote a color
of any vertex v in this 3-coloring by bc(v) and call it a base color (for simplicity we will
use red, green and blue as base colors and their arrangement is given in Figure 1), i.e.
bc(v) ∈ {R,G,B}.

We call a triangle-free hexagonal graph an induced subgraph of the triangular lattice without
3-clique. We define a corner in a triangle-free hexagonal graph as a vertex which has at
least two neighbors and none of them are at angle π. A vertex which is not a corner is
called a non-corner (see Figure 2).

Figure 2: All possibilities for: (a) - corners, (b) - non-corners

From [5] we know that for any weighted bipartite graph H, χm(H) = ω(H), and it can be
optimally multicolored by the following procedure:

Procedure 2.1. Let H = (V ′, V ′′, E, d) be a weighted bipartite graph. We get an optimal
multicoloring of H if to each vertex v ∈ V ′ we assign a set of colors {1, 2, . . . , d(v)}, while
with each vertex v ∈ V ′′ we associate a set of colors {m(v) + 1,m(v) + 2, . . . ,m(v) + d(v)},
where m(v) = max{d(u) : {u, v} ∈ E}.

3

Notice that in any weighted hexagonal graph G, a subgraph of the triangular lattice T
induced by vertices with positive demands d(v), the only cliques are triangles, edges and
isolated vertices. Note also that we assume that all vertices of T which are not in G have
to have demand d(v) = 0. Therefore, the weighted clique number of G can be computed as
follows:

ω(G) = max{d(u) + d(v) + d(t) : {u, v, t} ∈ τ(T)},

where τ(T) is the set of all triangles of T .

For each vertex v ∈ G, define base function κ as

κ(v) = max{a(v, u, t) : {v, u, t} ∈ τ(T)},

where a(u, v, t) = d(d(u)+d(v)+d(t))/3e, is an average weight of the triangle {u, v, t} ∈ τ(T).
It is easy to observe that the following fact holds.

Fact 2.2. For each v ∈ G,

κ(v) ≤
⌈
ω(G)

3

⌉
We call vertex v heavy if d(v) > κ(v), otherwise we call it light. If d(v) > 2κ(v) we call
vertex very heavy.

To color vertices of G we use colors from appropriate palette. For a given base color c, its
palette is defined as a set of pairs {(c, i)}i∈n, c ∈ {R,G,B}. Such palettes are called base
color palette. We will use also extra color pallete, (c ∈ {E}).

In our model of computations we assume that each vertex knows its coordinates as well as its
own demand (weight) and demands of all it neighbors in distance 2. With this knowledge,
each vertex has to color itself properly in constant time in a distributed way.

3 Algorithm and its correctness

Our algorithm consists of three main phases. In the first phase vertices take κ(v) colors
from its base color palette, so use no more than ω(G) colors. After this phase all light
vertices are fully colored while the remaining vertices create a triangle-free hexagonal graph
with weighted clique number not exceeding dω(G)/3e (after technical removing very heavy
vertices). In the second phase we construct bipartite subgraph of remaining graph, which
is induced by all vertices except some corners. We use 2.1 and color such graphs optimally
by using colors from extra color palette. First and second phase could be done in 1-local
model. In the third phase we need to use information from neighbors in distance 2 to color
remaining graph by using free colors from base color palletes.

More precisely, our algorithm consists of the following steps:

4

Algorithm

Step 0 For each vertex v = (x, y) ∈ V compute its base color bc(v)

bc(v) =


R if x+ 2y mod 3 = 0
G if x+ 2y mod 3 = 1
B if x+ 2y mod 3 = 2

,

and its base function value

κ(v) = max
{⌈

d(u) + d(v) + d(t)
3

⌉
: {v, u, t} ∈ τ(T)

}
.

Step 1 For each vertex v ∈ V assign to v min{κ(v), d(v)} colors from its base color palette.
Construct a new weighted triangle-free hexagonal graph G1 = (V1, E1, d1) where
d1(v) = max{d(v) − κ(v), 0}, V1 ⊆ V is the set of vertices with d1(v) > 0 (heavy
vertices) and E1 ⊆ E is the set of all edges in G with both endpoints from V1 (E1 is
induced by V1).

Step 2 For each vertex v ∈ V1 with d1(v) > κ(v) (very heavy vertices) assign free colors from
the base color palettes of its neighbors in T . Construct a new graph G2 = (V2, E2, d2)
where d2 is the difference between d1(v) and the number of assigned colors in this
Step, V2 ⊆ V1 is the set of vertices with d2(v) > 0 and E2 ⊆ E1 is the set of all edges
in G1 with both endpoints from V2 (E2 is induced by V2).

Step 3 Determine the following function p on vertices of G2:

– if v = (x, y) is a non-corner:

∗ if v has up-left or down-right neighbors in G2 then p(v) = x mod 2
∗ if v has up-right or down-left neighbors in G2 then p(v) = y mod 2
∗ if v has left or right neighbors in G2 then p(v) = x mod 2

– if v = (x, y) is a corner:

∗ if x mod 2 = y mod 2 then p(v) = y mod 2
∗ if x mod 2 6= y mod 2 then p(v) = 3

Step 4 Apply Procedure 2.1 to bipartite graph induced by all vertices from G2 with p(v) ∈
{1, 2} to satisfy all demands in G2 by colors from extra color palette. Construct a
new graph G3 = (V3, E3, d3) where d3 = d2 is the same as in G2, V3 ⊆ V2 is the set of
vertices with p(v) = 3 and E3 ⊆ E2 is the set of all edges in G2 with both endpoints
from V3 (E3 is induced by V3). Such graph contains only isolated vertices and isolated
edges.

Step 5 Construct graph H = (V (H), E(H), dH), where V (H) is sum of vertices from G3 and
its light neighbors in G with different color than its heavy neighbors and x mod 2 6=

5

y mod 2 Graph H contains only isolated path. Apply Procedure 2.1 to graph H
and satisfy all demands by color from base color palette of light vertices in skladowa
spojnosci!!!.

Step 6 Recolor such ligth vertices v = (x, y) with x mod 2 = y mod 2:

– (a) if v has one neighbor in G3 or two neighbors in G3 at angle π then use free
colors from bc(v) base color palette

– (b) if v has two neighbors in G3 at angle π/3 then use free colors from bc(v) base
color palette

– (c) if v has two neighbors in G3 at angle 2π/3 then use colors from extra color
palette as in Step 4 for vertices with p(v) = x mod 2

– (d) if v has more than two neighbors in G3 then use colors from extra color
palette as in Step 4 for vertices with p(v) = x mod 2

Correctness proof

At the very beginning of the algorithm there is a 2-local communication when each vertex
finds out about the demands of all its neighbors. From now on, no more communication
will be needed. Recall that each vertex knows its position (x, y) on the triangular lattice T .

In Step 0 there is nothing to prove.

In Step 1 each heavy vertex v assigns κ(v) colors from its base color palette, while each light
vertex u assigns d(u) colors from its base color palette. Note that G1 consists only of heavy
vertices, therefore G1 is a triangle-free hexagonal graph. For any {v, u, t} ∈ τ(G), since
3 min {κ(v), κ(u), κ(t)} ≥ d(v)+d(u)+d(t) and min {κ(v), κ(u), κ(t)} ≥ min {d(v), d(u), d(t)},
at most two of d1(v), d1(u), d1(t) are strictly positive and at least one of the vertices u, v
and t has all its required colors totally assigned in Step 1. Therefore, the graph G1 does
not contain 3-clique, i.e. it is a triangle-free hexagonal graph. The remaining weight of each
vertex v ∈ G1 is

d1(v) = d(v)− κ(v).

In Step 2 only vertices with d1(v) > κ(v) (very heavy vertices) are colored. If vertex v is
very heavy in G then it is isolated in G1 (all its neighbors are light in G). Otherwise, for
some {v, u, t} ∈ τ(T) we would have

d(v) + d(u) > 2κ(v) + κ(u) ≥ 3a(v, u, t) ≥ d(v) + d(u),

a contradiction. Without loss of generality we may assume that bc(v) = R. Denote by

DG(v) = min{κ(v)− d(u) : {u, v} ∈ T, bc(u) = G},

6

DB(v) = min{κ(v)− d(u) : {u, v} ∈ T, bc(u) = B}.

Obviously, DG(v), DB(v) > 0 for very heavy vertices v ∈ G1. Since in Step 1 each light
vertex t uses exactly d(t) colors from its base color palette, we have at least DG(v) free
colors from the green base color palette and at least DB(v) free colors from the blue base
color palette, so that vertex v can assign those colors to itself. Then, we would have G2

with ω(G2) ≤ dω(G)/3e. To prove it, we will need the following lemma:

Lemma 3.1. In G1 for every edge {v, u} ∈ E1 holds:

d1(v) + d1(u) ≤ κ(v), d1(u) + d1(v) ≤ κ(u).

Proof. Assume that v and u are heavy vertices in G and d1(v) + d1(u) > κ(v). Then for
some {v, u, t} ∈ τ(T) we have:

d(v) + d(u) = d1(v) + κ(v) + d1(u) + κ(u) > 2κ(v) + κ(u) ≥ 3a(u, v, t) ≥ d(u) + d(v),

again a contradiction.

Fact 3.2.
ω(G2) ≤ dω(G)/3e.

Proof. Recall that in a hexagonal graph the only cliques are triangles, edges and isolated
vertices. Since G1 is a triangle-free hexagonal graph, G2 also does not contain any triangle,
so we have only edges and isolated vertices to check.

For each edge {v, u} ∈ E2 from Lemma 3.1 and Fact 2.2 we have:

d2(v) + d2(u) ≤ d1(v) + d1(u) ≤ κ(v) ≤ dω(G)/3e.

For each isolated vertex v ∈ G2 we also should have d2(v) ≤ dω(G)/3e. Indeed, if d2(v) ≤
κ(v), then it holds by Fact 2.2. If d2(v) > κ(v), then d1(v) > κ(v), so v has to borrow colors
from its neighbors’ base color palettes in Step 2. Then, for bc(v) = R,

d2(v) = d1(v)−DG(v)−DB(v) ≤ d(v)− κ(v)− κ(v) + d(u)− κ(v) + d(t) ≤

≤ 3a(v, u, t)− 3κ(v) ≤ 0

for some {v, u, t} ∈ τ(T). Hence, d2(v) ≤ dω(G)/3e, and so ω(G2) ≤ dω(G)/3e.

In Step 3 each vertex v has to decide whether it is a corner in G2 or not. Only heavy neigh-
bors of v can still exist in G2. In 2-local model each vertex knows which of his neighbors
are heavy, so he also knows if it is a corner or not, and where are situated their neighbors
in G2.

In Step 4 we would like to apply Procedure 2.1 to graph induced on G2 by all vertices

7

with p(v) ∈ {1, 2}. It is easy to see that such graph is bipartite. For non-corners we use
coordinates to find out if vertex is ”odd” or ”even” while for corners we take only those
with compability parity. With value of function d2 in every neighbors, each vertex has all
knoledge to run Procedure 2.1.

After coloring vertices with p(v) ∈ {1, 2} we have only corners from G2 with p(v) = 3
and they induce a new graph G3. If a corner in G2 is surrounded by non-corners then it is
isolated vertex in G3. If a corner is adjacent with some other corner in G2 it must be one
of three situation from Figure 3.

Figure 3: All possibilities for adjacent corners in G2 (with coordinates mod 2)

As we can see on Figure 3 only connection from (c) can survive after coloring bipartite
graph and theese where the only edges in G3. Since such two edges cannot be adjacent in
G2, in G3 all edges are isolated.

In Step 5 we take an isolated vertices from G3 and go back to base color palettes. If
vertex v ∈ G3 is isolated, it means that it has three light neighbors with the same base
color. Without loss of generality, assume that bc(v) = R and its slight neighbors’ base color
is blue. Recall function DB from Step 2 – we have DB(v) free colors from blue base color
palette. We should have d3(v) ≤ DB(v). Let ∆ = {u, v, t} ∈ τ(T) be a triangle such that
t is the green vertex which is heavy neighbor of v, and u is the blue vertex which is a light
neighbor of v. Denote by s∆(t) = d(t)− a(u, v, t). Then we have

0 ≥ d(v)− a(u, v, t) + d(t)− a(u, v, t) + d(u)− a(u, v, t) ≥

≥ d(v)− κ(v) + s∆(t) + d(u)− κ(v) ≥ d1(v) + s∆(t)−DB(v) ≥
≥ d2(v) + s∆(t)−DB(v) = d3(v) + s∆(t)−DB(v)

Since t is a heavy neighbor of v, d3(v) < DB(v). Therefore, vertex v has as much as d3(v)
free colors from the blue base color palette at his disposal.

In Step 6 we take isolated edges from G3. If edge {v, u} ∈ G3 is isolated, it has to be
situated like on Figure 4.

Notice that all neighbor of both adjacent vertices have the same base color. Without loss
of generality, assume that bc(v) = R, bc(u) = B and its slight neighbors’ color is green.

8

Figure 4: Edge in G3 (two connected corners in G2)

Problemy sa przedstawione ponizej na rysunku: l

1-local model

In 1-local model v does not know which of his neighbors are heavy (and still exist in G2)
and which are light. Vertex v knows only where its neighbors with d(u) ≤ max{a(v, u, t) :
{v, u, t} ∈ τ(T)} are located. We call those vertices slight neighbors of v. Slight neighbors
of v must be light and, so, they are fully colored in Step 1. Thus, v knows where it cannot
have neighbors in G2 and presumes that all its neighbors which are not slight, still exist in
G2. Based on that knowledge, it can decide whether it is a corner or not. In each triangle in
τ(T) containing v at least one neighbor of v is slight, so v has at least three such neighbors.
If vertex v has more than four slight neighbors, then it is a non-corner. If vertex v has four
slight neighbors, then the remaining two are not slight. In this case if an angle between
those two are π, then v is non-corner, otherwise it is a corner. If vertex v has three slight
neighbors, then it is a corner.
In this terms we have that v has up-left or down-right neighbors in G2 if they are not slight,
etc.

The only problem is that, under 1-locality assumption, vertices cannot calculate value of d2

of the neighbors, which is needed in Procedure 2.1 to calculate value m(v) = max{dd2(u)e :
{u, v} ∈ E2}. However, we can replace d2(u) by dv

2(u), which is the number of expected
demands on vertex u in vertex v after Step 2, and take m′(v) = max{ddv

2(u)e : {u, v} ∈ E2}.
More precisely,

dv
2(u) = d(u)−max{a(u, v, t) : {u, v, t} ∈ τ(T)}

Note that dv
2(u) ≥ d2(u) for any {u, v} ∈ E2. However, for every {v, u} ∈ E2 we have

d2(v) + dv
2(u) ≤ κ(v).

Assume that this inequality does not hold.
Denote by b(u, v) = max{a(u, v, t) : {u, v, t} ∈ τ(T)}.
Then for some {t, v, u} ∈ τ(T) we have:

d(v) + d(u) = d2(v) + κ(v) + dv
2(u) + b(u, v) > 2κ(v) + b(u, v) ≥

9

Figure 5: Situation after Step 4

≥ 3a(u, v, t) ≥ d(u) + d(v),

a contradiction. Hence, if we use dv
2 instead of d2 in each vertex from the second set of our

bipartition, Procedure 2.1 works and uses at most dω(G)/3e colors.

Notice that in 1-local model vertex in G3 do not know if it is isolated or not. It has to check,
which neighbors of its non slight neighbors are slight. To do this we need to use 2-local
communication. Also in Step 6, to calculate value of base function of neighbor corner we
need 2-local communication. Therefore, our algorithm is not 1-local. But notice also, that
if we know that in G3 will not be any edges, than we can multicolor our graph G in 1-local
model by using our algorithm.

Ratio

We claim that during the first phase (Steps 1 and 2) our algorithm uses at most ω(G) + 3
colors. To see this notice that in Step 1 each vertex v uses at most κ(v) colors from its base
color palette and, by Fact 2.2 and the fact that there are three base colors, we know that
no more than 3 dω(G)/3e ≤ ω(G) + 3 colors are used. Note also that in Step 2 we use only

10

those colors from base color palettes which have not been used in Step 1, so overall no more
than ω(G) + 3 colors are used in total in the first phase.

During the second phase (Step 4) we optimally color some subgraph of G2 and from Lemma
3.2 use no more than ω(G2). During the third phase (Steps 5 and 6) we borrow some colors
from the base color palettes that have not been used in the previous steps, in order to avoid
an introduction of any new colors.
Let A(G) denote the number of colors used by our algorithm for the graph G. Thus, since
ω(G2) ≤ dω(G)/3e ≤ ω(G)/3 + 1, the total number of colors used by our algorithm is at
most

A(G) = ω(G) + 3 + ω(G2) ≤ ω(G) + 3 +
ω(G)

3
+ 1 ≤ 4

3
ω(G) + 4.

So, the performance ratio for our strategy is 4/3 and we arrived at the thesis of Theorem
1.1.

4 Conclusion

We have given a 4/3-approximation algorithm for multicoloring hexagonal graphs, which is
easier than previous known, and it is almost 1-local.

References

[1] R.Witkowski 1-local 17/12-competitive Algorithm for Multicoloring Hexagonal Graphs,
Submitted for publication, 2009.

[2] P. Sparl, J. Zerovnik 2-local 4/3-competitive Algorithm for Multicoloring Hexagonal
Graphs, Journal of Algorithms 55(1) (2005) 29-41

[3] C. McDiarmid, B. Reed Channel assignment and weighted coloring, Networks (2000)
114-117

[4] L. Narayanan Channel assignment and graph multicoloring, Handbook of wireless net-
works and mobile computing (2002) 71-94

[5] L. Narayanan, S.M. Shende Static frequency assignment in cellular networks, Algorith-
mica 29 (2001) 396-409

[6] W.K. Hale Frequency assignment: theory and applications, Proceedings of the IEEE
68(12) (1980) 1497-1514

[7] J. Janssen, D. Krizanc, L. Narayanan, S. Shende Distributed Online Frequency Assign-
ment in Cellular Network, Journal of Algorithms 36 (2000) 119-151

11

